On RGI Algorithms for Solving Sylvester Tensor Equations

Pub Date : 2022-01-01 DOI:10.11650/tjm/220103
Xin-Fang Zhang, Qingwen Wang
{"title":"On RGI Algorithms for Solving Sylvester Tensor Equations","authors":"Xin-Fang Zhang, Qingwen Wang","doi":"10.11650/tjm/220103","DOIUrl":null,"url":null,"abstract":". This paper is concerned with studying the relaxed gradient-based iterative method based on tensor format to solve the Sylvester tensor equation. From the information given by the previous steps, we further develop a modified relaxed gradient-based iterative method which converges faster than the method above. Under some suitable conditions, we prove that the introduced methods are convergent to the unique solution for any initial tensor. At last, we provide some numerical examples to show that our methods perform much better than the GI algorithm proposed by Chen and Lu (Math. Probl. Eng. 2013) both in the number of iteration steps and the elapsed CPU time.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

. This paper is concerned with studying the relaxed gradient-based iterative method based on tensor format to solve the Sylvester tensor equation. From the information given by the previous steps, we further develop a modified relaxed gradient-based iterative method which converges faster than the method above. Under some suitable conditions, we prove that the introduced methods are convergent to the unique solution for any initial tensor. At last, we provide some numerical examples to show that our methods perform much better than the GI algorithm proposed by Chen and Lu (Math. Probl. Eng. 2013) both in the number of iteration steps and the elapsed CPU time.
分享
查看原文
求解Sylvester张量方程的RGI算法
本文研究了基于张量格式的基于松弛梯度的迭代方法来求解Sylvester张量方程。根据前面步骤提供的信息,我们进一步开发了一种改进的基于松弛梯度的迭代方法,该方法比上面的方法收敛更快。在一些适当的条件下,我们证明了所引入的方法收敛于任何初始张量的唯一解。最后,我们提供了一些数值例子,表明我们的方法在迭代步数和CPU运行时间方面都比Chen和Lu(Math.Probl.Eng.2013)提出的GI算法要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信