Transforming Data with Ontology and Word Embedding for an Efficient Classification Framework

Q2 Engineering
Thi Thanh Sang Nguyen, P. M. T. Do, Thanh Tuan Nguyen, T. Quan
{"title":"Transforming Data with Ontology and Word Embedding for an Efficient Classification Framework","authors":"Thi Thanh Sang Nguyen, P. M. T. Do, Thanh Tuan Nguyen, T. Quan","doi":"10.4108/eetinis.v10i2.2726","DOIUrl":null,"url":null,"abstract":"Transforming data into appropriate formats is crucial because it can speed up the training process and enhance the performance of classification algorithms. It is, however, challenging due to the complicated process, resource-intensive and preserved meaning of the data. This study proposes new approaches to building knowledge representation models using word-embedding and ontology techniques, which can transform text data into digital data and still keep semantic/context information of themselves in order to enhance modeling data later. To evaluate the effectiveness of the built models, a classification framework is proposed and performed on a public real dataset. Experimental results show that the constructed knowledge representation models contribute significantly to the performance of classification methods.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eetinis.v10i2.2726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming data into appropriate formats is crucial because it can speed up the training process and enhance the performance of classification algorithms. It is, however, challenging due to the complicated process, resource-intensive and preserved meaning of the data. This study proposes new approaches to building knowledge representation models using word-embedding and ontology techniques, which can transform text data into digital data and still keep semantic/context information of themselves in order to enhance modeling data later. To evaluate the effectiveness of the built models, a classification framework is proposed and performed on a public real dataset. Experimental results show that the constructed knowledge representation models contribute significantly to the performance of classification methods.
基于本体和词嵌入的数据转换高效分类框架
将数据转换为适当的格式至关重要,因为它可以加快训练过程并提高分类算法的性能。然而,由于数据的过程复杂、资源密集和意义保留,它具有挑战性。本研究提出了使用单词嵌入和本体技术构建知识表示模型的新方法,该方法可以将文本数据转换为数字数据,并且仍然保留其自身的语义/上下文信息,以便以后增强建模数据。为了评估所建立模型的有效性,提出了一个分类框架,并在公共真实数据集上执行。实验结果表明,所构建的知识表示模型对分类方法的性能有显著贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信