Variation of stable birational types in positive characteristic

Pub Date : 2019-03-14 DOI:10.46298/epiga.2020.volume3.5728
Stefan Schreieder
{"title":"Variation of stable birational types in positive characteristic","authors":"Stefan Schreieder","doi":"10.46298/epiga.2020.volume3.5728","DOIUrl":null,"url":null,"abstract":"Let k be an uncountable algebraically closed field and let Y be a smooth\nprojective k-variety which does not admit a decomposition of the diagonal. We\nprove that Y is not stably birational to a very general hypersurface of any\ngiven degree and dimension. We use this to study the variation of the stable\nbirational types of Fano hypersurfaces over fields of arbitrary characteristic.\nThis had been initiated by Shinder, whose method works in characteristic zero.\n\n Comment: 14 pages; final version, published in EPIGA","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2020.volume3.5728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Let k be an uncountable algebraically closed field and let Y be a smooth projective k-variety which does not admit a decomposition of the diagonal. We prove that Y is not stably birational to a very general hypersurface of any given degree and dimension. We use this to study the variation of the stable birational types of Fano hypersurfaces over fields of arbitrary characteristic. This had been initiated by Shinder, whose method works in characteristic zero. Comment: 14 pages; final version, published in EPIGA
分享
查看原文
稳定两种类型阳性特征的变异
设k是不可数代数闭域,设Y是不允许对角线分解的光滑投影k-变种。我们证明了Y对任何给定度和维数的非常一般的超曲面都不是稳定的对偶的。我们用它来研究Fano超曲面在任意特征场上的稳定对偶型的变化。这是由Shinder发起的,他的方法适用于零特性。评论:14页;最终版本,发布于EPIGA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信