Prediksi Tingkat Kelulusan Mahasiswa Menggunakan Machine Learning dengan Teknik Deep Learning

Martanto Martanto, Irfan Ali, M. Mulyawan
{"title":"Prediksi Tingkat Kelulusan Mahasiswa Menggunakan Machine Learning dengan Teknik Deep Learning","authors":"Martanto Martanto, Irfan Ali, M. Mulyawan","doi":"10.30591/JPIT.V4I2-2.1877.G1119","DOIUrl":null,"url":null,"abstract":"The graduation rate of students on time at the Informatics Engineering study program STMIK IKMI Cirebon greatly affects the accreditation assessment. Graduation prediction is difficult to do, but many have done predictions using a variety of methods. Graduation prediction is needed in order to determine preventive policies for students who graduate not on time. The method used in this research is Machine learning with deep learning techniques. The data set used as many as 405 data of students who graduated on time or who were not on time. The research attributes used are the Nim attribute, the GPA value of students who have graduated and the status of graduating or not graduating. The results of this study are the level of accuracy using Machine Learning by 72.84%.","PeriodicalId":53375,"journal":{"name":"Jurnal Informatika Jurnal Pengembangan IT","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Jurnal Pengembangan IT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30591/JPIT.V4I2-2.1877.G1119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The graduation rate of students on time at the Informatics Engineering study program STMIK IKMI Cirebon greatly affects the accreditation assessment. Graduation prediction is difficult to do, but many have done predictions using a variety of methods. Graduation prediction is needed in order to determine preventive policies for students who graduate not on time. The method used in this research is Machine learning with deep learning techniques. The data set used as many as 405 data of students who graduated on time or who were not on time. The research attributes used are the Nim attribute, the GPA value of students who have graduated and the status of graduating or not graduating. The results of this study are the level of accuracy using Machine Learning by 72.84%.
利用机器学习和深度学习技术预测学生资格水平
信息工程研究项目STMIK IKMI井里汶的学生按时毕业率对认证评估有很大影响。毕业预测很难做到,但许多人已经使用各种方法进行了预测。为了确定针对未按时毕业的学生的预防政策,需要进行毕业预测。本研究中使用的方法是使用深度学习技术的机器学习。该数据集使用了多达405个按时毕业或未按时毕业的学生的数据。使用的研究属性是Nim属性、已毕业学生的GPA值以及毕业或未毕业的状态。这项研究的结果是使用机器学习的准确率提高了72.84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信