{"title":"MCDM, EMO and Hybrid Approaches: Tutorial and Review","authors":"Ankur Sinha, J. Wallenius","doi":"10.3390/mca27060112","DOIUrl":null,"url":null,"abstract":"Most of the practical applications that require optimization often involve multiple objectives. These objectives, when conflicting in nature, pose both optimization as well as decision-making challenges. An optimization procedure for such a multi-objective problem requires computing (computer-based search) and decision making to identify the most preferred solution. Researchers and practitioners working in various domains have integrated computing and decision-making tasks in several ways, giving rise to a variety of algorithms to handle multi-objective optimization problems. For instance, an a priori approach requires formulating (or eliciting) a decision maker’s value function and then performing a one-shot optimization of the value function, whereas an a posteriori decision-making approach requires a large number of diverse Pareto-optimal solutions to be available before a final decision is made. Alternatively, an interactive approach involves interactions with the decision maker to guide the search towards better solutions (or the most preferred solution). In our tutorial and survey paper, we first review the fundamental concepts of multi-objective optimization. Second, we discuss the classic interactive approaches from the field of Multi-Criteria Decision Making (MCDM), followed by the underlying idea and methods in the field of Evolutionary Multi-Objective Optimization (EMO). Third, we consider several promising MCDM and EMO hybrid approaches that aim to capitalize on the strengths of the two domains. We conclude with discussions on important behavioral considerations related to the use of such approaches and future work.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca27060112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Most of the practical applications that require optimization often involve multiple objectives. These objectives, when conflicting in nature, pose both optimization as well as decision-making challenges. An optimization procedure for such a multi-objective problem requires computing (computer-based search) and decision making to identify the most preferred solution. Researchers and practitioners working in various domains have integrated computing and decision-making tasks in several ways, giving rise to a variety of algorithms to handle multi-objective optimization problems. For instance, an a priori approach requires formulating (or eliciting) a decision maker’s value function and then performing a one-shot optimization of the value function, whereas an a posteriori decision-making approach requires a large number of diverse Pareto-optimal solutions to be available before a final decision is made. Alternatively, an interactive approach involves interactions with the decision maker to guide the search towards better solutions (or the most preferred solution). In our tutorial and survey paper, we first review the fundamental concepts of multi-objective optimization. Second, we discuss the classic interactive approaches from the field of Multi-Criteria Decision Making (MCDM), followed by the underlying idea and methods in the field of Evolutionary Multi-Objective Optimization (EMO). Third, we consider several promising MCDM and EMO hybrid approaches that aim to capitalize on the strengths of the two domains. We conclude with discussions on important behavioral considerations related to the use of such approaches and future work.
期刊介绍:
Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.