Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers

Pub Date : 2021-04-19 DOI:10.5802/aif.3561
Y. Bugeaud, M. Laurent
{"title":"Combinatorial structure of Sturmian words and continued fraction expansion of Sturmian numbers","authors":"Y. Bugeaud, M. Laurent","doi":"10.5802/aif.3561","DOIUrl":null,"url":null,"abstract":"Let $\\theta = [0; a_1, a_2, \\dots]$ be the continued fraction expansion of an irrational real number $\\theta \\in (0, 1)$. It is well-known that the characteristic Sturmian word of slope $\\theta$ is the limit of a sequence of finite words $(M_k)_{k \\ge 0}$, with $M_k$ of length $q_k$ (the denominator of the $k$-th convergent to $\\theta$) being a suitable concatenation of $a_k$ copies of $M_{k-1}$ and one copy of $M_{k-2}$. Our first result extends this to any Sturmian word. Let $b \\ge 2$ be an integer. Our second result gives the continued fraction expansion of any real number $\\xi$ whose $b$-ary expansion is a Sturmian word ${\\bf s}$ over the alphabet $\\{0, b-1\\}$. This extends a classical result of B\\\"ohmer who considered only the case where ${\\bf s}$ is characteristic. As a consequence, we obtain a formula for the irrationality exponent of $\\xi$ in terms of the slope and the intercept of ${\\bf s}$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let $\theta = [0; a_1, a_2, \dots]$ be the continued fraction expansion of an irrational real number $\theta \in (0, 1)$. It is well-known that the characteristic Sturmian word of slope $\theta$ is the limit of a sequence of finite words $(M_k)_{k \ge 0}$, with $M_k$ of length $q_k$ (the denominator of the $k$-th convergent to $\theta$) being a suitable concatenation of $a_k$ copies of $M_{k-1}$ and one copy of $M_{k-2}$. Our first result extends this to any Sturmian word. Let $b \ge 2$ be an integer. Our second result gives the continued fraction expansion of any real number $\xi$ whose $b$-ary expansion is a Sturmian word ${\bf s}$ over the alphabet $\{0, b-1\}$. This extends a classical result of B\"ohmer who considered only the case where ${\bf s}$ is characteristic. As a consequence, we obtain a formula for the irrationality exponent of $\xi$ in terms of the slope and the intercept of ${\bf s}$.
分享
查看原文
图尔曼词的组合结构与图尔曼数的连分式展开
设$\theta=[0;a_1,a_2,\dots]$是无理实数$\theta在(0,1)$中的连续分式展开。众所周知,斜率$\theta$的特征Sturmian字是有限字序列$(M_k)_{k\ge0}$的极限,长度为$q_k$的$M_k$(收敛到$\theta$的第$k$的分母)是$M_{k-1}$的$a_k$个拷贝和$M_{k-2}$的一个拷贝的适当级联。我们的第一个结果将此扩展到任何斯特米语单词。设$b\ge2$是一个整数。我们的第二个结果给出了任何实数$\neneneba xi$的连续分数展开,该实数的$b$元展开是字母$\{0,b-1\}$上的Sturmian词${\bf s}$。这推广了B\“ohmer的一个经典结果,他只考虑了${\bf s}$是特征的情况。因此,我们得到了$\neneneba xi$在斜率和截距方面的非理性指数的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信