Z. Karami, M. Zohuriaan-Mehr, K. Kabiri, N. Ghasemi Rad
{"title":"Bio-based thermoset alloys from epoxy acrylate, sesame oil- and castor oil-derived resins: Renewable alternatives to vinyl ester and unsaturated polyester resins","authors":"Z. Karami, M. Zohuriaan-Mehr, K. Kabiri, N. Ghasemi Rad","doi":"10.1177/2041247919863633","DOIUrl":null,"url":null,"abstract":"This study deals with the synthesis of vegetable oil (VO)-derived formulated resins with high bio-based content (30–77%) as potential renewable alternatives to conventional fossil-based vinyl ester (VE) and unsaturated polyester (UP) resins. First, epoxy acrylate was synthesized from a commercial epoxy resin via acrylation with acrylic acid. Then, acrylated epoxidized sesame oil (AESSO) and maleated castor oil (MCO) were synthesized and spectrally characterized. Afterward, networks of VE, AESSO, and MCO or their binary blends were prepared. The curing trend of the resins was investigated by differential scanning calorimetry. According to thermal and thermomechanical analysis, all of the VO-based networks possessed slightly inferior properties compared to those of VE. However, the adhesion strength of the VO-based alloying systems was higher than that of their petroleum-based counterpart based on T-peel and lap shear tests. Overall, it was concluded that the bio-resourced alloys could be considered as good alternatives to VE and UP resins, and the novel bio-resin formulations may be designed for adhesives, the polymer–matrix composites, and surface coating applications.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2041247919863633","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2041247919863633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 15
Abstract
This study deals with the synthesis of vegetable oil (VO)-derived formulated resins with high bio-based content (30–77%) as potential renewable alternatives to conventional fossil-based vinyl ester (VE) and unsaturated polyester (UP) resins. First, epoxy acrylate was synthesized from a commercial epoxy resin via acrylation with acrylic acid. Then, acrylated epoxidized sesame oil (AESSO) and maleated castor oil (MCO) were synthesized and spectrally characterized. Afterward, networks of VE, AESSO, and MCO or their binary blends were prepared. The curing trend of the resins was investigated by differential scanning calorimetry. According to thermal and thermomechanical analysis, all of the VO-based networks possessed slightly inferior properties compared to those of VE. However, the adhesion strength of the VO-based alloying systems was higher than that of their petroleum-based counterpart based on T-peel and lap shear tests. Overall, it was concluded that the bio-resourced alloys could be considered as good alternatives to VE and UP resins, and the novel bio-resin formulations may be designed for adhesives, the polymer–matrix composites, and surface coating applications.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.