Ludovic Calès , Apostolos Chalkis , Ioannis Z. Emiris , Vissarion Fisikopoulos
{"title":"Practical volume approximation of high-dimensional convex bodies, applied to modeling portfolio dependencies and financial crises","authors":"Ludovic Calès , Apostolos Chalkis , Ioannis Z. Emiris , Vissarion Fisikopoulos","doi":"10.1016/j.comgeo.2022.101916","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>We examine volume computation of general-dimensional polytopes and more general </span>convex bodies, defined by the intersection of a simplex by a family of parallel </span>hyperplanes<span>, and another family of parallel hyperplanes or a family of concentric ellipsoids. Such convex bodies appear in modeling and predicting financial crises. The impact of crises on the economy (labor, income, etc.) makes its detection of prime interest for the public in general and for policy makers in particular. Certain features of dependencies in the markets clearly identify times of turmoil. We describe the relationship between asset characteristics by means of a copula<span>; each characteristic is either a linear or quadratic form of the portfolio components, hence the copula can be estimated by computing volumes of convex bodies.</span></span></p><p><span>We design and implement practical algorithms in the exact and approximate setting, and experimentally juxtapose them in order to study the trade-off of exactness and accuracy for speed. We also experimentally find an efficient parameter-tuning to achieve a sufficiently good estimation of the probability density of each copula. Our C++ software, based on Eigen and available on </span><span>github</span>, is shown to be very effective in up to 100 dimensions. Our results offer novel, effective means of computing portfolio dependencies and an indicator of financial crises, which is shown to correctly identify past crises.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772122000591","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We examine volume computation of general-dimensional polytopes and more general convex bodies, defined by the intersection of a simplex by a family of parallel hyperplanes, and another family of parallel hyperplanes or a family of concentric ellipsoids. Such convex bodies appear in modeling and predicting financial crises. The impact of crises on the economy (labor, income, etc.) makes its detection of prime interest for the public in general and for policy makers in particular. Certain features of dependencies in the markets clearly identify times of turmoil. We describe the relationship between asset characteristics by means of a copula; each characteristic is either a linear or quadratic form of the portfolio components, hence the copula can be estimated by computing volumes of convex bodies.
We design and implement practical algorithms in the exact and approximate setting, and experimentally juxtapose them in order to study the trade-off of exactness and accuracy for speed. We also experimentally find an efficient parameter-tuning to achieve a sufficiently good estimation of the probability density of each copula. Our C++ software, based on Eigen and available on github, is shown to be very effective in up to 100 dimensions. Our results offer novel, effective means of computing portfolio dependencies and an indicator of financial crises, which is shown to correctly identify past crises.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.