Equitable Edge Coloring of Splitting Graph of Some Classes of Wheel Graphs

4区 数学 Q4 Mathematics
Jagannathan M, Vernold Vivin J, Veninstine Vivik J
{"title":"Equitable Edge Coloring of Splitting Graph of Some Classes of Wheel Graphs","authors":"Jagannathan M, Vernold Vivin J, Veninstine Vivik J","doi":"10.61091/ars156-05","DOIUrl":null,"url":null,"abstract":"The coloring of all the edges of a graph \\(G\\) with the minimum number of colors, such that the adjacent edges are allotted a different color is known as the proper edge coloring. It is said to be equitable, if the number of edges in any two color classes differ by atmost one. In this paper, we obtain the equitable edge coloring of splitting graph of \\(W_n\\), \\(DW_n\\) and \\(G_n\\) by determining its edge chromatic number.","PeriodicalId":55575,"journal":{"name":"Ars Combinatoria","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Combinatoria","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.61091/ars156-05","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The coloring of all the edges of a graph \(G\) with the minimum number of colors, such that the adjacent edges are allotted a different color is known as the proper edge coloring. It is said to be equitable, if the number of edges in any two color classes differ by atmost one. In this paper, we obtain the equitable edge coloring of splitting graph of \(W_n\), \(DW_n\) and \(G_n\) by determining its edge chromatic number.
一类轮图分裂图的公平边着色
用最少的颜色数给图\(G\)的所有边上色,使相邻的边被分配不同的颜色,称为适当的边上色。如果任意两个颜色类中的边数相差不超过一条,则称其为公平的。本文通过确定\(W_n\)、\(DW_n\)和\(G_n\)的分裂图的边色数,得到了分裂图的均匀边着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ars Combinatoria
Ars Combinatoria 数学-数学
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信