Singular Ramsey and Turán numbers

Q4 Mathematics
Y. Caro, Z. Tuza
{"title":"Singular Ramsey and Turán numbers","authors":"Y. Caro, Z. Tuza","doi":"10.20429/TAG.2019.060101","DOIUrl":null,"url":null,"abstract":"We say that a subgraph $F$ of a graph $G$ is singular if the degrees $d_G(v)$ are all equal or all distinct for the vertices $v\\in V(F)$. The singular Ramsey number Rs$(F)$ is the smallest positive integer $n$ such that, for every $m\\geq n$, in every edge 2-coloring of $K_m$, at least one of the color classes contains $F$ as a singular subgraph. In a similar flavor, the singular Tur\\'an number Ts$(n,F)$ is defined as the maximum number of edges in a graph of order $n$, which does not contain $F$ as a singular subgraph. In this paper we initiate the study of these extremal problems. We develop methods to estimate Rs$(F)$ and Ts$(n,F)$, present tight asymptotic bounds and exact results.","PeriodicalId":37096,"journal":{"name":"Theory and Applications of Graphs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Applications of Graphs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20429/TAG.2019.060101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

We say that a subgraph $F$ of a graph $G$ is singular if the degrees $d_G(v)$ are all equal or all distinct for the vertices $v\in V(F)$. The singular Ramsey number Rs$(F)$ is the smallest positive integer $n$ such that, for every $m\geq n$, in every edge 2-coloring of $K_m$, at least one of the color classes contains $F$ as a singular subgraph. In a similar flavor, the singular Tur\'an number Ts$(n,F)$ is defined as the maximum number of edges in a graph of order $n$, which does not contain $F$ as a singular subgraph. In this paper we initiate the study of these extremal problems. We develop methods to estimate Rs$(F)$ and Ts$(n,F)$, present tight asymptotic bounds and exact results.
奇异Ramsey和Turán数
我们说图$G$的子图$F$是奇异的,如果度$d_G(v)$对于顶点$v\in V(F)$都相等或都不同。奇异拉姆齐数Rs $(F)$是最小的正整数$n$,使得对于每个$m\geq n$,在$K_m$的每个边2着色中,至少有一个颜色类包含$F$作为奇异子图。类似地,奇异的Turán数Ts $(n,F)$被定义为阶为$n$的图中的最大边数,该图不包含$F$作为奇异子图。本文开始对这些极值问题进行研究。我们开发了估计Rs $(F)$和Ts $(n,F)$的方法,给出了严密的渐近界和精确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory and Applications of Graphs
Theory and Applications of Graphs Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.70
自引率
0.00%
发文量
17
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信