{"title":"A Robust Decomposition Methodology for Synthesis of Flexible Processes with Many Uncertainty Parameters – Application to HEN Synthesis","authors":"Klavdija Zirngast, Z. Kravanja, Z. N. Pintarič","doi":"10.15255/CABEQ.2018.1400","DOIUrl":null,"url":null,"abstract":"This contribution presents a new robust decomposition methodology for generating optimal flexible process flow sheets with a large number of uncertain parameters. During the initial steps, first-stage variables are determined by performing mixed-integer nonlinear programming (MINLP) synthesis of a flow sheet at the nominal conditions, and then by exposing the obtained flow sheet sequentially over a set of extreme MINLP scenarios of uncertain parameters. As a result, the sizes of the flow-sheet units gradually increase, and/or new units are added until the required feasibility is achieved. After testing the flexibility of the obtained design, a Monte Carlo stochastic optimization of the second-stage variables is performed using a sampling method in order to obtain an optimum value of the expected objective variable. The advantages of the proposed methodology are the independence of process model sizes from the number of uncertain parameters, the straightforward use of deterministic models for incorporating uncertainty, and relatively simple execution of MINLP synthesis of processes under uncertainty. Thus, it could be used for designing large processes with a large number of uncertain parameters. The methodology is illustrated by synthesis of a flexible Heat Exchanger Network.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2019-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/CABEQ.2018.1400","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
This contribution presents a new robust decomposition methodology for generating optimal flexible process flow sheets with a large number of uncertain parameters. During the initial steps, first-stage variables are determined by performing mixed-integer nonlinear programming (MINLP) synthesis of a flow sheet at the nominal conditions, and then by exposing the obtained flow sheet sequentially over a set of extreme MINLP scenarios of uncertain parameters. As a result, the sizes of the flow-sheet units gradually increase, and/or new units are added until the required feasibility is achieved. After testing the flexibility of the obtained design, a Monte Carlo stochastic optimization of the second-stage variables is performed using a sampling method in order to obtain an optimum value of the expected objective variable. The advantages of the proposed methodology are the independence of process model sizes from the number of uncertain parameters, the straightforward use of deterministic models for incorporating uncertainty, and relatively simple execution of MINLP synthesis of processes under uncertainty. Thus, it could be used for designing large processes with a large number of uncertain parameters. The methodology is illustrated by synthesis of a flexible Heat Exchanger Network.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.