G. P. Muller, M. Hoffmann, C. Disselkamp, Daniel Schurhoff, Stefanos Mavros, Moritz Sallermann, N. Kiselev, H. J'onsson, Stefan Blugel Peter Grunberg Institut, Institute for Advanced Simulation, F. Julich, Jara, H Germany, S. Institute, Faculty of Nuclear Sciences, University of Iceland, Iceland, D. Physics, R. University
{"title":"Spirit\n: Multifunctional framework for atomistic spin simulations","authors":"G. P. Muller, M. Hoffmann, C. Disselkamp, Daniel Schurhoff, Stefanos Mavros, Moritz Sallermann, N. Kiselev, H. J'onsson, Stefan Blugel Peter Grunberg Institut, Institute for Advanced Simulation, F. Julich, Jara, H Germany, S. Institute, Faculty of Nuclear Sciences, University of Iceland, Iceland, D. Physics, R. University","doi":"10.1103/PhysRevB.99.224414","DOIUrl":null,"url":null,"abstract":"The \\textit{Spirit} framework is designed for atomic scale spin simulations of magnetic systems of arbitrary geometry and magnetic structure, providing a graphical user interface with powerful visualizations and an easy to use scripting interface. An extended Heisenberg type spin-lattice Hamiltonian including competing exchange interactions between neighbors at arbitrary distance, higher-order exchange, Dzyaloshinskii-Moriya and dipole-dipole interactions is used to describe the energetics of a system of classical spins localised at atom positions. A variety of common simulations methods are implemented including Monte Carlo and various time evolution algorithms based on the Landau-Lifshitz-Gilbert equation of motion, which can be used to determine static ground state and metastable spin configurations, sample equilibrium and finite temperature thermodynamical properties of magnetic materials and nanostructures or calculate dynamical trajectories including spin torques induced by stochastic temperature or electric current. Methods for finding the mechanism and rate of thermally assisted transitions include the geodesic nudged elastic band method, which can be applied when both initial and final states are specified, and the minimum mode following method when only the initial state is given. The lifetime of magnetic states and rate of transitions can be evaluated within the harmonic approximation of transition-state theory. The framework offers performant CPU and GPU parallelizations. All methods are verified and applications to several systems, such as vortices, domain walls, skyrmions and bobbers are described.","PeriodicalId":48701,"journal":{"name":"Physical Review B","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2019-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/PhysRevB.99.224414","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevB.99.224414","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 84
Abstract
The \textit{Spirit} framework is designed for atomic scale spin simulations of magnetic systems of arbitrary geometry and magnetic structure, providing a graphical user interface with powerful visualizations and an easy to use scripting interface. An extended Heisenberg type spin-lattice Hamiltonian including competing exchange interactions between neighbors at arbitrary distance, higher-order exchange, Dzyaloshinskii-Moriya and dipole-dipole interactions is used to describe the energetics of a system of classical spins localised at atom positions. A variety of common simulations methods are implemented including Monte Carlo and various time evolution algorithms based on the Landau-Lifshitz-Gilbert equation of motion, which can be used to determine static ground state and metastable spin configurations, sample equilibrium and finite temperature thermodynamical properties of magnetic materials and nanostructures or calculate dynamical trajectories including spin torques induced by stochastic temperature or electric current. Methods for finding the mechanism and rate of thermally assisted transitions include the geodesic nudged elastic band method, which can be applied when both initial and final states are specified, and the minimum mode following method when only the initial state is given. The lifetime of magnetic states and rate of transitions can be evaluated within the harmonic approximation of transition-state theory. The framework offers performant CPU and GPU parallelizations. All methods are verified and applications to several systems, such as vortices, domain walls, skyrmions and bobbers are described.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter