Hongli Su, A. Nilghaz, Dan Liu, Rashid Mehmood, C. Sorrell, Jingliang Li
{"title":"Degradation of phenolic pollutants by persulfate-based advanced oxidation processes: metal and carbon-based catalysis","authors":"Hongli Su, A. Nilghaz, Dan Liu, Rashid Mehmood, C. Sorrell, Jingliang Li","doi":"10.1515/revce-2022-0037","DOIUrl":null,"url":null,"abstract":"Abstract Wastewater recycling is a solution to address the global water shortage. Phenols are major pollutants in wastewater, and they are toxic even at very low concentrations. Advanced oxidation process (AOP) is an emerging technique for the effective degradation and mineralization of phenols into water. Herein, we aim at giving an insight into the current state of the art in persulfate-based AOP for the oxidation of phenols using metal/metal-oxide and carbon-based materials. Special attention has been paid to the design strategies of high-performance catalysts, and their advantages and drawbacks are discussed. Finally, the key challenges that govern the implementation of persulfate-based AOP catalysts in water purification, in terms of cost and environmental friendliness, are summarized and possible solutions are proposed. This work is expected to help the selection of the optimal strategy for treating phenol emissions in real scenarios.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/revce-2022-0037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Wastewater recycling is a solution to address the global water shortage. Phenols are major pollutants in wastewater, and they are toxic even at very low concentrations. Advanced oxidation process (AOP) is an emerging technique for the effective degradation and mineralization of phenols into water. Herein, we aim at giving an insight into the current state of the art in persulfate-based AOP for the oxidation of phenols using metal/metal-oxide and carbon-based materials. Special attention has been paid to the design strategies of high-performance catalysts, and their advantages and drawbacks are discussed. Finally, the key challenges that govern the implementation of persulfate-based AOP catalysts in water purification, in terms of cost and environmental friendliness, are summarized and possible solutions are proposed. This work is expected to help the selection of the optimal strategy for treating phenol emissions in real scenarios.
期刊介绍:
Reviews in Chemical Engineering publishes authoritative review articles on all aspects of the broad field of chemical engineering and applied chemistry. Its aim is to develop new insights and understanding and to promote interest and research activity in chemical engineering, as well as the application of new developments in these areas. The bimonthly journal publishes peer-reviewed articles by leading chemical engineers, applied scientists and mathematicians. The broad interest today in solutions through chemistry to some of the world’s most challenging problems ensures that Reviews in Chemical Engineering will play a significant role in the growth of the field as a whole.