Seismic performance evaluation of slotted-weband bolt-flange plate moment connection

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
S. M. S. Kolbadi, Hosein Piri, A. Keyhani, S. Kolbadi, M. Mirtaheri
{"title":"Seismic performance evaluation of slotted-weband bolt-flange plate moment connection","authors":"S. M. S. Kolbadi, Hosein Piri, A. Keyhani, S. Kolbadi, M. Mirtaheri","doi":"10.12989/EAS.2021.20.6.655","DOIUrl":null,"url":null,"abstract":"In this article, a steel moment connection of beam to the column called a slotted web and bolt flange plate moment connection is introduced and the seismic performance of the connection is assessed by modeling the finite element. The connection consists of two slots in the beam web and bolted plates to the beam flange at the area of connection of the beam to the column to create a plastic hinge in an area farther from the column face, thus reducing the plastic strain equivalent to the panel zone and welding the beam-to-column connection area. The beam is connected to the slab on the side so that no plastic hinge is created against the side buckling. A numerical study has been performed to find the effectiveness of the proposed connection parameters. The results showed that following the limitations in this study, the SW-BFP connection had better hysteresis behavior than the SW connection. The deformation capacity of the connection in the SW-BFP connection (slotted web and bolt flange plate moment connection) has increased up to 112% compared to the connection of the beam with the slot web (SW). The sheet bolted to the beam flange on both sides of the beam with the slot die causes the buckling modes to occur later and reduces the stress by 23.93% in the beam-to-column connection area and 20.94% in the connection panel zone compared to the SW connection. Also, adding bolt-to-beam plates to the SW connection reduces the plastic strain in the panel zone by 87%, while the strain value in the beam-to-column connection area has reached zero.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.6.655","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

Abstract

In this article, a steel moment connection of beam to the column called a slotted web and bolt flange plate moment connection is introduced and the seismic performance of the connection is assessed by modeling the finite element. The connection consists of two slots in the beam web and bolted plates to the beam flange at the area of connection of the beam to the column to create a plastic hinge in an area farther from the column face, thus reducing the plastic strain equivalent to the panel zone and welding the beam-to-column connection area. The beam is connected to the slab on the side so that no plastic hinge is created against the side buckling. A numerical study has been performed to find the effectiveness of the proposed connection parameters. The results showed that following the limitations in this study, the SW-BFP connection had better hysteresis behavior than the SW connection. The deformation capacity of the connection in the SW-BFP connection (slotted web and bolt flange plate moment connection) has increased up to 112% compared to the connection of the beam with the slot web (SW). The sheet bolted to the beam flange on both sides of the beam with the slot die causes the buckling modes to occur later and reduces the stress by 23.93% in the beam-to-column connection area and 20.94% in the connection panel zone compared to the SW connection. Also, adding bolt-to-beam plates to the SW connection reduces the plastic strain in the panel zone by 87%, while the strain value in the beam-to-column connection area has reached zero.
开槽腹板-螺栓-法兰弯矩连接抗震性能评价
本文介绍了一种梁与柱的钢筋弯矩连接——开槽腹板-螺栓翼缘板弯矩连接,并通过有限元建模对这种连接的抗震性能进行了评价。通过在梁腹板上开两个槽,在梁与柱的连接处将板螺栓连接到梁翼缘上,在离柱面较远的区域形成塑性铰,从而减少相当于面板区域的塑性应变,焊接梁与柱的连接区域。梁连接到一侧的板上,这样就不会对侧屈曲产生塑性铰。数值研究表明了所提出的连接参数的有效性。结果表明,在本研究的限制下,SW- bfp连接比SW连接具有更好的滞后行为。SW- bfp连接(槽腹板+螺栓法兰板力矩连接)的连接变形能力比槽腹板连接(SW)提高了112%。采用槽型板料将板料螺栓连接到梁两侧的梁翼缘上,使屈曲模式发生得更晚,与SW连接相比,梁柱连接区域的应力降低23.93%,连接板区域的应力降低20.94%。此外,在SW连接中添加螺栓-梁板可使面板区域的塑性应变降低87%,而梁-柱连接区域的应变值为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信