De novo design of potential SARS-CoV-2 main protease inhibitors using artificial intelligence and molecular modeling technologies

IF 0.1 Q4 MULTIDISCIPLINARY SCIENCES
A. Andrianov, K. V. Furs, M. Shuldau, A. Tuzikov
{"title":"De novo design of potential SARS-CoV-2 main protease inhibitors using artificial intelligence and molecular modeling technologies","authors":"A. Andrianov, K. V. Furs, M. Shuldau, A. Tuzikov","doi":"10.29235/1561-8323-2023-67-3-197-206","DOIUrl":null,"url":null,"abstract":"De novo design of 95 775 potential ligands of SARS-CoV-2 main protease (Mpro), playing an important role in the process of virus replication, was carried out using a deep learning generative neural network that was developed previously based on artificial intelligence technologies. Molecular docking and molecular dynamics methods were used to evaluate the binding affinity of these molecules to the catalytic site of the enzyme. As a result, 7 leading compounds exhibiting Gibbs free energy low values comparable with the values obtained using an identical computational protocol for two potent non-covalent SARS-CoV-2 Mpro inhibitors used in calculations as a positive control were selected. The results obtained indicate the promise of applying identified compounds for development of new antiviral drugs able to inhibit the catalytic activity of SARSCoV-2 Mpro.","PeriodicalId":41825,"journal":{"name":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-8323-2023-67-3-197-206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

De novo design of 95 775 potential ligands of SARS-CoV-2 main protease (Mpro), playing an important role in the process of virus replication, was carried out using a deep learning generative neural network that was developed previously based on artificial intelligence technologies. Molecular docking and molecular dynamics methods were used to evaluate the binding affinity of these molecules to the catalytic site of the enzyme. As a result, 7 leading compounds exhibiting Gibbs free energy low values comparable with the values obtained using an identical computational protocol for two potent non-covalent SARS-CoV-2 Mpro inhibitors used in calculations as a positive control were selected. The results obtained indicate the promise of applying identified compounds for development of new antiviral drugs able to inhibit the catalytic activity of SARSCoV-2 Mpro.
利用人工智能和分子建模技术从头设计潜在的严重急性呼吸系统综合征冠状病毒2型主要蛋白酶抑制剂
使用先前基于人工智能技术开发的深度学习生成神经网络,对在病毒复制过程中发挥重要作用的95 775个严重急性呼吸系统综合征冠状病毒2型主要蛋白酶(Mpro)的潜在配体进行了从头设计。使用分子对接和分子动力学方法来评估这些分子与酶催化位点的结合亲和力。结果,选择了7种主要化合物,其吉布斯自由能低值与使用相同的计算方案获得的值相当,这两种有效的非共价型严重急性呼吸系统综合征冠状病毒2型Mpro抑制剂在计算中用作阳性对照。所获得的结果表明,应用已鉴定的化合物开发能够抑制严重急性呼吸系统综合征冠状病毒2 Mpro催化活性的新型抗病毒药物是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI
DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI MULTIDISCIPLINARY SCIENCES-
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信