Thoracoabdominal injury analysis of a 6-year-old pedestrian finite element model in vehicle-pedestrian collisions

Q4 Engineering
Wenle Lv, J. Ruan, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan
{"title":"Thoracoabdominal injury analysis of a 6-year-old pedestrian finite element model in vehicle-pedestrian collisions","authors":"Wenle Lv, J. Ruan, Haiyan Li, Shihai Cui, Lijuan He, Shijie Ruan","doi":"10.1504/IJVS.2017.10008209","DOIUrl":null,"url":null,"abstract":"A holistic human body finite element model of a 6-year-old pedestrian was completed by integrating the skin, soft tissues and joint ligaments, based on the component models of a 6-year-old child. The complete model was verified by comparing to available cadaveric test data. Then it was used to simulate collisions of midsize car/SUV-paediatric pedestrian at different collision speeds, in order to study the effects of collision speed, and vehicle type on kinematic/biomechanical responses of paediatric chest and abdomen, and to predict the injuries of bones and internal organs according to compression/viscous criterion and strain. Simulation results showed that the number of rib fractures increased with the increase of collision speed in collision simulations of midsize car-paediatric pedestrian, but no rib fracture appeared in simulations of SUV-paediatric pedestrian impact. Maximum values of chest/abdomen/thigh impact forces, maximum deformation/VCmax of paediatric chest and abdomen, and maximum first principal strain of internal organs were proportional to collision speed. Predicted paediatric chest and abdominal injuries, obtained from the midsize car-pedestrian simulations, were found to be consistent when compression/viscous criterion and first principal strain were used as a yardstick for injury assessment. Additionally, compression/viscous criteria had some limitations on the prediction of rib fracture in SUV-pedestrian collision simulations.","PeriodicalId":35143,"journal":{"name":"International Journal of Vehicle Safety","volume":"9 1","pages":"279-297"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVS.2017.10008209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

A holistic human body finite element model of a 6-year-old pedestrian was completed by integrating the skin, soft tissues and joint ligaments, based on the component models of a 6-year-old child. The complete model was verified by comparing to available cadaveric test data. Then it was used to simulate collisions of midsize car/SUV-paediatric pedestrian at different collision speeds, in order to study the effects of collision speed, and vehicle type on kinematic/biomechanical responses of paediatric chest and abdomen, and to predict the injuries of bones and internal organs according to compression/viscous criterion and strain. Simulation results showed that the number of rib fractures increased with the increase of collision speed in collision simulations of midsize car-paediatric pedestrian, but no rib fracture appeared in simulations of SUV-paediatric pedestrian impact. Maximum values of chest/abdomen/thigh impact forces, maximum deformation/VCmax of paediatric chest and abdomen, and maximum first principal strain of internal organs were proportional to collision speed. Predicted paediatric chest and abdominal injuries, obtained from the midsize car-pedestrian simulations, were found to be consistent when compression/viscous criterion and first principal strain were used as a yardstick for injury assessment. Additionally, compression/viscous criteria had some limitations on the prediction of rib fracture in SUV-pedestrian collision simulations.
车-人碰撞中6岁行人胸腹损伤的有限元分析
基于一名6岁儿童的组件模型,通过整合皮肤、软组织和关节韧带,完成了一名6年行人的整体人体有限元模型。通过与现有的尸体测试数据进行比较,验证了完整的模型。然后用它模拟了中型轿车/SUV儿童行人在不同碰撞速度下的碰撞,以研究碰撞速度和车辆类型对儿童胸部和腹部运动/生物力学反应的影响,并根据压缩/粘性标准和应变预测骨骼和内脏的损伤。仿真结果表明,在中型车儿童行人碰撞仿真中,肋骨骨折的数量随着碰撞速度的增加而增加,但在SUV儿童行人碰撞模拟中没有出现肋骨骨折。胸部/腹部/大腿撞击力的最大值、儿童胸部和腹部的最大变形/VCmax以及内脏的最大第一主应变与碰撞速度成正比。当使用压缩/粘性标准和第一主应变作为损伤评估的标准时,从中型汽车-行人模拟中获得的预测的儿科胸部和腹部损伤是一致的。此外,在SUV行人碰撞模拟中,压缩/粘性标准对肋骨骨折的预测有一些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Vehicle Safety
International Journal of Vehicle Safety Engineering-Automotive Engineering
CiteScore
0.30
自引率
0.00%
发文量
0
期刊介绍: The IJVS aims to provide a refereed and authoritative source of information in the field of vehicle safety design, research, and development. It serves applied scientists, engineers, policy makers and safety advocates with a platform to develop, promote, and coordinate the science, technology and practice of vehicle safety. IJVS also seeks to establish channels of communication between industry and academy, industry and government in the field of vehicle safety. IJVS is published quarterly. It covers the subjects of passive and active safety in road traffic as well as traffic related public health issues, from impact biomechanics to vehicle crashworthiness, and from crash avoidance to intelligent highway systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信