{"title":"On the algebraic cobordism spectra 𝐌𝐒𝐋 and 𝐌𝐒𝐩","authors":"I. Panin, C. Walter","doi":"10.1090/spmj/1748","DOIUrl":null,"url":null,"abstract":"<p>The algebraic cobordism spectra <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper M bold upper S bold upper L\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {MSL}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper M bold upper S bold p\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {MSp}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are constructed. They are commutative monoids in the category of symmetric <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T Superscript logical-and 2\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>T</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>∧<!-- ∧ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">T^{\\wedge 2}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-spectra. The spectrum <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper M bold upper S bold p\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {MSp}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> comes with a natural symplectic orientation given either by a tautological Thom class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"t h Superscript bold upper M bold upper S bold p element-of bold upper M bold upper S bold p Superscript 4 comma 2 Baseline left-parenthesis bold upper M bold upper S bold p Subscript 2 Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>t</mml:mi>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">th^{\\mathbf {MSp}} \\in \\mathbf {MSp}^{4,2}(\\mathbf {MSp}_2)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or a tautological Borel class <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b 1 Superscript bold upper M bold upper S bold p Baseline element-of bold upper M bold upper S bold p Superscript 4 comma 2 Baseline left-parenthesis upper H upper P Superscript normal infinity Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msubsup>\n <mml:mi>b</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>1</mml:mn>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msubsup>\n <mml:mo>∈<!-- ∈ --></mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n <mml:mo>,</mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>H</mml:mi>\n <mml:msup>\n <mml:mi>P</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">b_{1}^{\\mathbf {MSp}} \\in \\mathbf {MSp}^{4,2}(HP^{\\infty })</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, or any of six other equivalent structures. For a commutative monoid <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis upper S right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>S</mml:mi>\n <mml:mi>H</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">{SH}(S)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, it is proved that the assignment <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi right-arrow from bar phi left-parenthesis t h Superscript bold upper M bold upper S bold p Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo stretchy=\"false\">↦<!-- ↦ --></mml:mo>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:msup>\n <mml:mi>h</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n </mml:mrow>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varphi \\mapsto \\varphi (th^{\\mathbf {MSp}})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> identifies the set of homomorphisms of monoids <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi colon bold upper M bold upper S bold p right-arrow upper E\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>φ<!-- φ --></mml:mi>\n <mml:mo>:<!-- : --></mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">p</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">→<!-- → --></mml:mo>\n <mml:mi>E</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\varphi \\colon \\mathbf {MSp}\\to E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> in the motivic stable homotopy category <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis upper S right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>S</mml:mi>\n <mml:mi>H</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>S</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">SH(S)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> with the set of tautological Thom elements of symplectic orientations of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E\">\n <mml:semantics>\n <mml:mi>E</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">E</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. A weaker universality result is obtained for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper M bold upper S bold upper L\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"bold\">M</mml:mi>\n <mml:mi mathvariant=\"bold\">S</mml:mi>\n <mml:mi mathvariant=\"bold\">L</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbf {MSL}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and special linear orientations. The universality of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"bold upper M bold upper S bold p\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1748","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The algebraic cobordism spectra MSL\mathbf {MSL} and MSp\mathbf {MSp} are constructed. They are commutative monoids in the category of symmetric T∧2T^{\wedge 2}-spectra. The spectrum MSp\mathbf {MSp} comes with a natural symplectic orientation given either by a tautological Thom class thMSp∈MSp4,2(MSp2)th^{\mathbf {MSp}} \in \mathbf {MSp}^{4,2}(\mathbf {MSp}_2), or a tautological Borel class b1MSp∈MSp4,2(HP∞)b_{1}^{\mathbf {MSp}} \in \mathbf {MSp}^{4,2}(HP^{\infty }), or any of six other equivalent structures. For a commutative monoid EE in the category SH(S){SH}(S), it is proved that the assignment φ↦φ(thMSp)\varphi \mapsto \varphi (th^{\mathbf {MSp}}) identifies the set of homomorphisms of monoids φ:MSp→E\varphi \colon \mathbf {MSp}\to E in the motivic stable homotopy category SH(S)SH(S) with the set of tautological Thom elements of symplectic orientations of EE. A weaker universality result is obtained for MSL\mathbf {MSL} and special linear orientations. The universality of
构造了代数同基谱MSL\mathbf{MSL}和MSp\mathbf{MSp}。它们是对称T∧2 T^{\wedge 2}-谱范畴中的交换幺群。谱M S p \mathbf{MSp}具有一个自然辛定向,该定向由一个重言托姆类t h M S p∈M S p 4,2(M S p 2)th ^{\mathbf{MSp}}\ in \mathbf{MSp}^{4,2}{MSp}_2)或一个重言的Borel类b1M S p∈M S p 4,2(HP∞)b_{1}^{\mathbf{MSp}}\in\mathbf{MSp}^{4,2}(HP^{\infty}),或其他六种等效结构中的任何一种。对于范畴S H(S){SH}(S)中的一个交换幺半群E E,证明了赋值φ↦ φ(t h M S p)\varphi\mapsto\varphi(th ^{\mathbf{MSp}})确定了么半群的同态集φ:M S p→ E\varphi\colon\mathbf{MSp}\ to E在运动稳定的同伦学范畴SH(S)SH(S。对于M S L \mathbf{MSL}和特殊的线性取向,得到了一个较弱的普适性结果。的普遍性
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.