Stabilization analysis of a class of nonlinear time delay systems with time-varying full-state constraints

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Youguo He, Yu Zhou, Dapeng Wang, S. Liu, Xiu-ling Wei
{"title":"Stabilization analysis of a class of nonlinear time delay systems with time-varying full-state constraints","authors":"Youguo He, Yu Zhou, Dapeng Wang, S. Liu, Xiu-ling Wei","doi":"10.1080/00051144.2023.2190694","DOIUrl":null,"url":null,"abstract":"In this paper, a novel tracking control strategy is proposed to address the problem of stabilization of a class of nonlinear time delay systems with time-varying full-state constraints. The effect of the nonlinear system resulting from the time delays is canceled out with the utilization of the novel iterative procedures optimized by dynamic surface control (DSC) and the appropriate time-varying asymmetric barrier Lyapunov functions (ABLFs) are employed to stem the violation of time-varying states constraints. Finally, it is proved that the proposed control method guarantees the uniformly ultimate boundedness of all the signals in the closed-loop system, meanwhile, the tracking errors converge to a small interval. The effectiveness of the presented control strategy is confirmed by a simulation example provided in this paper.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":"64 1","pages":"496 - 507"},"PeriodicalIF":1.7000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2190694","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a novel tracking control strategy is proposed to address the problem of stabilization of a class of nonlinear time delay systems with time-varying full-state constraints. The effect of the nonlinear system resulting from the time delays is canceled out with the utilization of the novel iterative procedures optimized by dynamic surface control (DSC) and the appropriate time-varying asymmetric barrier Lyapunov functions (ABLFs) are employed to stem the violation of time-varying states constraints. Finally, it is proved that the proposed control method guarantees the uniformly ultimate boundedness of all the signals in the closed-loop system, meanwhile, the tracking errors converge to a small interval. The effectiveness of the presented control strategy is confirmed by a simulation example provided in this paper.
一类具有时变全状态约束的非线性时滞系统的镇定分析
针对一类具有时变全状态约束的非线性时滞系统的镇定问题,提出了一种新的跟踪控制策略。利用动态面控制优化的迭代过程消除了系统的非线性时滞影响,并利用适当的时变非对称势垒Lyapunov函数来抑制系统对时变状态约束的破坏。最后证明了所提出的控制方法保证了闭环系统中所有信号的一致最终有界性,同时使跟踪误差收敛到一个小区间内。通过仿真算例验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Automatika
Automatika AUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍: AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope. AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信