Unipotent diagonalization of matrices

IF 0.5 Q3 MATHEMATICS
G. Călugăreanu
{"title":"Unipotent diagonalization of matrices","authors":"G. Călugăreanu","doi":"10.24330/ieja.1281654","DOIUrl":null,"url":null,"abstract":"An element $u$ of a ring $R$ is called \\textsl{unipotent} if $u-1$ is \nnilpotent. Two elements $a,b\\in R$ are called \\textsl{unipotent equivalent} \nif there exist unipotents $p,q\\in R$ such that $b=q^{-1}ap$. Two square \nmatrices $A,B$ are called \\textsl{strongly unipotent equivalent} if there \nare unipotent triangular matrices $P,Q$ with $B=Q^{-1}AP$. \nIn this paper, over commutative reduced rings, we characterize the matrices \nwhich are strongly unipotent equivalent to diagonal matrices. For $2\\times 2$ \nmatrices over B\\'{e}zout domains, we characterize the nilpotent matrices \nunipotent equivalent to some multiples of $E_{12}$ and the nontrivial \nidempotents unipotent equivalent to $E_{11}$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1281654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An element $u$ of a ring $R$ is called \textsl{unipotent} if $u-1$ is nilpotent. Two elements $a,b\in R$ are called \textsl{unipotent equivalent} if there exist unipotents $p,q\in R$ such that $b=q^{-1}ap$. Two square matrices $A,B$ are called \textsl{strongly unipotent equivalent} if there are unipotent triangular matrices $P,Q$ with $B=Q^{-1}AP$. In this paper, over commutative reduced rings, we characterize the matrices which are strongly unipotent equivalent to diagonal matrices. For $2\times 2$ matrices over B\'{e}zout domains, we characterize the nilpotent matrices unipotent equivalent to some multiples of $E_{12}$ and the nontrivial idempotents unipotent equivalent to $E_{11}$.
矩阵的单元对角化
如果$u-1$是幂零的,则环$R$的元素$u$被称为\textsl{unipotent}。R$中的两个元素$a,b\被称为\textsl{单势等价},如果R$中存在单势$p,q\,使得$b=q^{-1}ap$。如果存在具有$B=Q的单幂三角矩阵$P,Q$,则两个平方矩阵$A,B$被称为\textsl{强单幂等价}^{-1}AP$。本文在交换约化环上,刻画了与对角矩阵强单极等价的矩阵。对于B\'上的$2\乘以2$矩阵{e}zout在域中,我们刻画了等价于$E_{12}$的一些倍数的幂零矩阵单势和等价于$E.{11}$的非平凡幂等矩阵单势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信