Johannes von Hinten, Malte Kircher, Alexander Dierks, Christian H Pfob, Takahiro Higuchi, Martin G Pomper, Steven P Rowe, Andreas K Buck, Samuel Samnick, Rudolf A Werner, Constantin Lapa
{"title":"Molecular Imaging in Multiple Myeloma-Novel PET Radiotracers Improve Patient Management and Guide Therapy.","authors":"Johannes von Hinten, Malte Kircher, Alexander Dierks, Christian H Pfob, Takahiro Higuchi, Martin G Pomper, Steven P Rowe, Andreas K Buck, Samuel Samnick, Rudolf A Werner, Constantin Lapa","doi":"10.3389/fnume.2022.801792","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[<sup>18</sup>F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [<sup>11</sup>C]methionine and [<sup>11</sup>C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [<sup>68</sup>Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.</p>","PeriodicalId":73095,"journal":{"name":"Frontiers in nuclear medicine (Lausanne, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440847/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in nuclear medicine (Lausanne, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnume.2022.801792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its proven value in imaging of multiple myeloma (MM), including staging, prognostication, and assessment of therapy response, 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron emission tomography (PET) is utilized extensively in the clinic. However, its accuracy is hampered by imperfect sensitivity (e.g., so-called FDG-negative MM) as well as specificity (e.g., inflammatory processes), with common pitfalls including fractures and degenerative changes. Novel approaches providing a read-out of increased protein or lipid membrane syntheses, such as [11C]methionine and [11C]choline or the C-X-C motif chemokine receptor 4-targeting radiotracer [68Ga]Pentixafor, have already been shown to be suitable adjuncts or alternatives to FDG. In the present focused review, those imaging agents along with their theranostic potential in the context of MM are highlighted.