The maximum spectral radius of graphs with a large core

IF 0.7 4区 数学 Q2 Mathematics
Xiaocong He, Lihua Feng, D. Stevanović
{"title":"The maximum spectral radius of graphs with a large core","authors":"Xiaocong He, Lihua Feng, D. Stevanović","doi":"10.13001/ela.2023.7283","DOIUrl":null,"url":null,"abstract":"The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\\leq k\\leq m\\leq n$, we denote $R_{n, k, m}=K_k\\vee(K_{m-k}\\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7283","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\leq k\leq m\leq n$, we denote $R_{n, k, m}=K_k\vee(K_{m-k}\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.
具有大核的图的最大谱半径
图$G$的$(k+1)$ -核,用$C_{k+1}(G)$表示,是通过反复去除任何小于或等于$k$的顶点而得到的子图。$C_{k+1}(G)$是最小度大于$k$且顶点数最大的唯一诱导子图。对于$1\leq k\leq m\leq n$,我们表示$R_{n, k, m}=K_k\vee(K_{m-k}\cup {I_{n-m}})$。本文证明了$R_{n, k, m}$在其$(k+1)$ -核最多有$m$个顶点的所有$n$ -顶点图中获得了最大谱半径和无符号拉普拉斯谱半径。我们的结果扩展了Nikiforov [Electron]最近证明的一个定理。[j].数学学报,2014,27(2):557—557。此外,我们还给出了结果的二部化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信