The maximum spectral radius of graphs with a large core

Pub Date : 2023-02-24 DOI:10.13001/ela.2023.7283
Xiaocong He, Lihua Feng, D. Stevanović
{"title":"The maximum spectral radius of graphs with a large core","authors":"Xiaocong He, Lihua Feng, D. Stevanović","doi":"10.13001/ela.2023.7283","DOIUrl":null,"url":null,"abstract":"The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\\leq k\\leq m\\leq n$, we denote $R_{n, k, m}=K_k\\vee(K_{m-k}\\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2023.7283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The $(k+1)$-core of a graph $G$, denoted by $C_{k+1}(G)$, is the subgraph obtained by repeatedly removing any vertex of degree less than or equal to $k$. $C_{k+1}(G)$ is the unique induced subgraph of minimum degree larger than $k$ with a maximum number of vertices. For $1\leq k\leq m\leq n$, we denote $R_{n, k, m}=K_k\vee(K_{m-k}\cup {I_{n-m}})$. In this paper, we prove that $R_{n, k, m}$ obtains the maximum spectral radius and signless Laplacian spectral radius among all $n$-vertex graphs whose $(k+1)$-core has at most $m$ vertices. Our result extends a recent theorem proved by Nikiforov [Electron. J. Linear Algebra, 27:250--257, 2014]. Moreover, we also present the bipartite version of our result.
分享
查看原文
具有大核的图的最大谱半径
图$G$的$(k+1)$ -核,用$C_{k+1}(G)$表示,是通过反复去除任何小于或等于$k$的顶点而得到的子图。$C_{k+1}(G)$是最小度大于$k$且顶点数最大的唯一诱导子图。对于$1\leq k\leq m\leq n$,我们表示$R_{n, k, m}=K_k\vee(K_{m-k}\cup {I_{n-m}})$。本文证明了$R_{n, k, m}$在其$(k+1)$ -核最多有$m$个顶点的所有$n$ -顶点图中获得了最大谱半径和无符号拉普拉斯谱半径。我们的结果扩展了Nikiforov [Electron]最近证明的一个定理。[j].数学学报,2014,27(2):557—557。此外,我们还给出了结果的二部化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信