Pseudodifferential operators on filtered manifolds as generalized fixed points

IF 0.7 2区 数学 Q2 MATHEMATICS
E. Ewert
{"title":"Pseudodifferential operators on filtered manifolds as generalized fixed points","authors":"E. Ewert","doi":"10.4171/jncg/502","DOIUrl":null,"url":null,"abstract":"On filtered manifolds one can define a different notion of order for the differential operators. In this paper, we use generalized fixed point algebras to construct a pseudodifferential extension that reflects this behaviour. In the corresponding calculus, the principal symbol of an operator is a family of operators acting on certain nilpotent Lie groups. The role of ellipticity as a Fredholm condition is replaced by the Rockland condition on these groups. Our approach allows to understand this in terms of the representation of the corresponding algebra of principal symbols. Moreover, we compute the $K$-theory of this algebra.","PeriodicalId":54780,"journal":{"name":"Journal of Noncommutative Geometry","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Noncommutative Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jncg/502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

On filtered manifolds one can define a different notion of order for the differential operators. In this paper, we use generalized fixed point algebras to construct a pseudodifferential extension that reflects this behaviour. In the corresponding calculus, the principal symbol of an operator is a family of operators acting on certain nilpotent Lie groups. The role of ellipticity as a Fredholm condition is replaced by the Rockland condition on these groups. Our approach allows to understand this in terms of the representation of the corresponding algebra of principal symbols. Moreover, we compute the $K$-theory of this algebra.
作为广义不动点的滤波流形上的伪微分算子
在过滤流形上,我们可以为微分算子定义不同的阶概念。在本文中,我们利用广义不动点代数构造了一个反映这一性质的伪微分扩展。在相应的微积分中,一个算子的主符号是作用于某些幂零李群的算子族。在这些群上,椭圆性作为Fredholm条件的作用被Rockland条件所取代。我们的方法可以从主符号的相应代数的表示来理解这一点。此外,我们还计算了这个代数的K理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Journal of Noncommutative Geometry covers the noncommutative world in all its aspects. It is devoted to publication of research articles which represent major advances in the area of noncommutative geometry and its applications to other fields of mathematics and theoretical physics. Topics covered include in particular: Hochschild and cyclic cohomology K-theory and index theory Measure theory and topology of noncommutative spaces, operator algebras Spectral geometry of noncommutative spaces Noncommutative algebraic geometry Hopf algebras and quantum groups Foliations, groupoids, stacks, gerbes Deformations and quantization Noncommutative spaces in number theory and arithmetic geometry Noncommutative geometry in physics: QFT, renormalization, gauge theory, string theory, gravity, mirror symmetry, solid state physics, statistical mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信