Holomorphic Eisenstein series of rational weights and special values of Gamma function

IF 0.5 3区 数学 Q3 MATHEMATICS
Xiaojie Zhu
{"title":"Holomorphic Eisenstein series of rational weights and special values of Gamma function","authors":"Xiaojie Zhu","doi":"10.4064/aa221110-1-4","DOIUrl":null,"url":null,"abstract":"We give all possible holomorphic Eisenstein series on $\\Gamma_0(p)$, of rational weights greater than $2$, and with multiplier systems the same as certain rational-weight eta-quotients at all cusps. We prove they are modular forms and give their Fourier expansions. We establish four sorts of identities that equate such series to rational-weight eta-quotients. As an application, we give series expressions of special values of Euler Gamma function at any rational arguments. These expressions involve exponential sums of Dedekind sums.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa221110-1-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give all possible holomorphic Eisenstein series on $\Gamma_0(p)$, of rational weights greater than $2$, and with multiplier systems the same as certain rational-weight eta-quotients at all cusps. We prove they are modular forms and give their Fourier expansions. We establish four sorts of identities that equate such series to rational-weight eta-quotients. As an application, we give series expressions of special values of Euler Gamma function at any rational arguments. These expressions involve exponential sums of Dedekind sums.
有理权的全纯爱森斯坦级数和函数的特殊值
我们给出了$\Gamma_0(p)$上所有可能的全纯Eisenstein级数,其有理权大于$2$,并且乘子系统在所有尖端与某些有理权η商相同。我们证明了它们是模形式,并给出了它们的傅立叶展开式。我们建立了四类恒等式,将这些级数等同于有理权η商。作为一个应用,我们给出了Euler-Gamma函数在任意有理参数下的特殊值的级数表达式。这些表达式涉及Dedekind和的指数和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Arithmetica
Acta Arithmetica 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
64
审稿时长
4-8 weeks
期刊介绍: The journal publishes papers on the Theory of Numbers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信