Directional recrystallisation processing: a review

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chao Yang, I. Baker
{"title":"Directional recrystallisation processing: a review","authors":"Chao Yang, I. Baker","doi":"10.1080/09506608.2020.1819688","DOIUrl":null,"url":null,"abstract":"ABSTRACT Directional recrystallisation processing is a solid-state process in which a specimen traverses a sharp hot zone and one or a few grains grow as they pass through the hot zone. The mechanism can be either a primary recrystallisation or secondary recrystallisation process, or a combination of both. The mechanism can be either primary recrystallisation or secondary recrystallisation process, or a combination of both. Directional recrystallisation was invented more than 80 years ago to achieve columnar grain structures or single crystals that have enhanced mechanical properties. This review discusses the effects of both processing parameters, including the temperature gradient, hot-zone velocity, and annealing temperature, and microstructural parameters, including stored energy, grain size, initial texture, solutes, and both soluble and insoluble particles, on the resulting microstructures. The results of simulations of directional recrystallisation, including Monte Carlo simulations, Front-Tracking methods, and phase-field simulations, are also reviewed. Finally, the effects of directional recrystallisation on material properties are discussed.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"66 1","pages":"256 - 286"},"PeriodicalIF":16.8000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2020.1819688","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2020.1819688","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT Directional recrystallisation processing is a solid-state process in which a specimen traverses a sharp hot zone and one or a few grains grow as they pass through the hot zone. The mechanism can be either a primary recrystallisation or secondary recrystallisation process, or a combination of both. The mechanism can be either primary recrystallisation or secondary recrystallisation process, or a combination of both. Directional recrystallisation was invented more than 80 years ago to achieve columnar grain structures or single crystals that have enhanced mechanical properties. This review discusses the effects of both processing parameters, including the temperature gradient, hot-zone velocity, and annealing temperature, and microstructural parameters, including stored energy, grain size, initial texture, solutes, and both soluble and insoluble particles, on the resulting microstructures. The results of simulations of directional recrystallisation, including Monte Carlo simulations, Front-Tracking methods, and phase-field simulations, are also reviewed. Finally, the effects of directional recrystallisation on material properties are discussed.
定向再结晶工艺综述
摘要定向再结晶工艺是一种固态工艺,试样穿过一个尖锐的热区,一个或几个晶粒在穿过热区时生长。该机制可以是一次再结晶或二次再结晶过程,也可以是二者的组合。其机制可以是一次再结晶或二次再结晶过程,也可以是二者的结合。定向再结晶是80多年前发明的,目的是获得具有增强机械性能的柱状晶粒结构或单晶。这篇综述讨论了两个工艺参数(包括温度梯度、热区速度和退火温度)和微观结构参数(包括储能、晶粒尺寸、初始织构、溶质以及可溶性和不溶性颗粒)对所得微观结构的影响。还回顾了定向再结晶的模拟结果,包括蒙特卡罗模拟、前沿跟踪方法和相场模拟。最后,讨论了定向再结晶对材料性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信