Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays

IF 1.1 Q2 MATHEMATICS, APPLIED
A. Anguraj, K. Ramkumar, K. Ravikumar
{"title":"Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays","authors":"A. Anguraj, K. Ramkumar, K. Ravikumar","doi":"10.22034/CMDE.2020.32591.1512","DOIUrl":null,"url":null,"abstract":"In this article, we concentrate on the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Initially, the existence of the mild solutions to the equations by utilizing Banach fixed point theorem is demonstrated. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.32591.1512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this article, we concentrate on the existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays. Initially, the existence of the mild solutions to the equations by utilizing Banach fixed point theorem is demonstrated. In the later case we explore the Hyers Ulam stability results under the Lipschitz condition on a bounded and closed interval.
有限时滞随机脉冲泛函积分微分方程的存在性及Hyers-Ulam稳定性
研究了有限时滞随机脉冲泛函积分微分方程的存在性和Hyers-Ulam稳定性。首先利用Banach不动点定理证明了方程温和解的存在性。在后一种情况下,我们探讨了有界闭区间上的Lipschitz条件下的Hyers Ulam稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信