Performa Metode Klasifikasi Tunggal dan Ensemble Model dalam Identifikasi Baku Mutu Air

Prasetya Widiharso, Siti Sendari, Anik Nur Handayani, Nastiti Susetyo Fanani Putri
{"title":"Performa Metode Klasifikasi Tunggal dan Ensemble Model dalam Identifikasi Baku Mutu Air","authors":"Prasetya Widiharso, Siti Sendari, Anik Nur Handayani, Nastiti Susetyo Fanani Putri","doi":"10.35970/infotekmesin.v13i2.1529","DOIUrl":null,"url":null,"abstract":"Water quality classification for the needs of recreational facilities, livestock, fisheries, and plantations is needed to determine utilization based on water quality according to national water quality standards. The methods used in this research are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), and Ensemble Model. The parameters measured consisted of temperature, TDS, TSS, pH, COD, BOD, DO, and rainfall. The main objective of this research is to discover the performance of a single classification method and ensemble model on data types with unbalanced class distributions. Classification objects are divided into two classes. First, is the class for the designation of recreational facilities, fisheries, and livestock. Second, the class for the allotment of crop cultivation. The test results of the application of the KNN obtained 86%, SVM obtained 87%, and NB obtained 90.57%. Meanwhile, through the ensemble model, the results obtained are 94.43% Bagging Classifier, 94.96% Gradient Boosting Classifier, and 95.94% Adaboost Classifier","PeriodicalId":33598,"journal":{"name":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infotekmesin Media Komunikasi Ilmiah Politeknik Cilacap","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35970/infotekmesin.v13i2.1529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Water quality classification for the needs of recreational facilities, livestock, fisheries, and plantations is needed to determine utilization based on water quality according to national water quality standards. The methods used in this research are K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Naïve Bayes (NB), and Ensemble Model. The parameters measured consisted of temperature, TDS, TSS, pH, COD, BOD, DO, and rainfall. The main objective of this research is to discover the performance of a single classification method and ensemble model on data types with unbalanced class distributions. Classification objects are divided into two classes. First, is the class for the designation of recreational facilities, fisheries, and livestock. Second, the class for the allotment of crop cultivation. The test results of the application of the KNN obtained 86%, SVM obtained 87%, and NB obtained 90.57%. Meanwhile, through the ensemble model, the results obtained are 94.43% Bagging Classifier, 94.96% Gradient Boosting Classifier, and 95.94% Adaboost Classifier
静音水识别中的单一分类方法与集成模型
需要根据娱乐设施、牲畜、渔业和种植园的需求对水质进行分类,以根据国家水质标准确定利用率。本研究中使用的方法有K-最近邻(KNN)、支持向量机(SVM)、朴素贝叶斯(NB)和集合模型。测量的参数包括温度、TDS、TSS、pH、COD、BOD、DO和降雨量。本研究的主要目的是发现单一分类方法和集成模型对具有不平衡类分布的数据类型的性能。分类对象分为两类。首先,是指定娱乐设施、渔业和畜牧业的类别。第二,阶级分配农作物耕种。KNN的应用测试结果获得了86%,SVM获得了87%,NB获得了90.57%。同时,通过集成模型,获得了94.43%的Bagging分类器、94.96%的Gradient Boosting分类器和95.94%的Adaboost分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
30
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信