Mizuki Watanabe, M. Itoh, Ryohei Oka, S. Ida, Toshiyuki Masui
{"title":"Nd-doped NASICON-type nanophosphors for near-infrared excitation and emission","authors":"Mizuki Watanabe, M. Itoh, Ryohei Oka, S. Ida, Toshiyuki Masui","doi":"10.1080/21870764.2023.2186842","DOIUrl":null,"url":null,"abstract":"ABSTRACT Neodymium-doped phosphates, (Nd1-x Gd x )0.33Zr2(PO4)3 (0 ≤ x ≤ 1), were synthesized by co-precipitation. (Nd1-x Gd x )0.33Zr2(PO4)3 was obtained as a single-phase and was confirmed to be a NASICON-type structure consisting of a three-dimensional network of PO4 tetrahedra sharing corners with ZrO6 octahedra. The particle size of the (Nd1-x Gd x )0.33Zr2(PO4)3 samples was in the nanoscale, which is suitable for in vivo optical imaging. The (Nd1-x Gd x )0.33Zr2(PO4)3 samples showed characteristic luminescence corresponding to the f – f transitions of Nd3+. The highest emission intensity at 1072 nm with excitation at 824 nm was observed for (Nd0.75Gd0.25)0.33Zr2(PO4)3, which was 4.5 times higher than that of Nd0.33Zr2(PO4)3. The near-infrared (NIR) emission intensity of this nanophosphor was significantly higher than that of indocyanine green, which is actually used as an in vivo optical probe reagent.","PeriodicalId":15130,"journal":{"name":"Journal of Asian Ceramic Societies","volume":"11 1","pages":"239 - 249"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Ceramic Societies","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21870764.2023.2186842","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Neodymium-doped phosphates, (Nd1-x Gd x )0.33Zr2(PO4)3 (0 ≤ x ≤ 1), were synthesized by co-precipitation. (Nd1-x Gd x )0.33Zr2(PO4)3 was obtained as a single-phase and was confirmed to be a NASICON-type structure consisting of a three-dimensional network of PO4 tetrahedra sharing corners with ZrO6 octahedra. The particle size of the (Nd1-x Gd x )0.33Zr2(PO4)3 samples was in the nanoscale, which is suitable for in vivo optical imaging. The (Nd1-x Gd x )0.33Zr2(PO4)3 samples showed characteristic luminescence corresponding to the f – f transitions of Nd3+. The highest emission intensity at 1072 nm with excitation at 824 nm was observed for (Nd0.75Gd0.25)0.33Zr2(PO4)3, which was 4.5 times higher than that of Nd0.33Zr2(PO4)3. The near-infrared (NIR) emission intensity of this nanophosphor was significantly higher than that of indocyanine green, which is actually used as an in vivo optical probe reagent.
期刊介绍:
The Journal of Asian Ceramic Societies is an open access journal publishing papers documenting original research and reviews covering all aspects of science and technology of Ceramics, Glasses, Composites, and related materials. These papers include experimental and theoretical aspects emphasizing basic science, processing, microstructure, characteristics, and functionality of ceramic materials. The journal publishes high quality full papers, letters for rapid publication, and in-depth review articles. All papers are subjected to a fair peer-review process.