{"title":"Exploring Enhancement of AR-HUD Visual Interaction Design Through Application of Intelligent Algorithms","authors":"Jian Teng, Fucheng Wan, Yiquan Kong","doi":"10.4018/ijitsa.326558","DOIUrl":null,"url":null,"abstract":"This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in complex driving situations. An immersive driving simulation incorporating eye-tracking technology was utilized to analyze objective physiological indices and measure subjective cognitive load using the NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, whereas the control group scored 43.53, indicating a remarkable improvement of 41.4%. This study presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load in complex driving situations. The findings demonstrate the potential of the proposed algorithm to enhance user experience and performance.","PeriodicalId":52019,"journal":{"name":"International Journal of Information Technologies and Systems Approach","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technologies and Systems Approach","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijitsa.326558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to optimize the visual interaction design of AR-HUD and reduce cognitive load in complex driving situations. An immersive driving simulation incorporating eye-tracking technology was utilized to analyze objective physiological indices and measure subjective cognitive load using the NASA-TLX. Additionally, a visual cognitive load index was integrated into a BP-GA neural network model for load prediction, enabling the derivation of an optimal solution for AR-HUD design. The optimized AR-HUD interface demonstrated a significant reduction in cognitive load compared to the previous prototype. The experimental group achieved a mean total score of 25.63 on the WP scale, whereas the control group scored 43.53, indicating a remarkable improvement of 41.4%. This study presents an innovative approach to optimizing AR-HUD design, effectively reducing cognitive load in complex driving situations. The findings demonstrate the potential of the proposed algorithm to enhance user experience and performance.