Supplementary material to "Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events"

N. Maher, T. Tabarin, Sebastian Milinski
{"title":"Supplementary material to \"Combining machine learning and SMILEs to classify, better understand, and project changes in ENSO events\"","authors":"N. Maher, T. Tabarin, Sebastian Milinski","doi":"10.5194/esd-2021-105-supplement","DOIUrl":null,"url":null,"abstract":"Abstract. The El Niño Southern Oscillation (ENSO) occurs in three phases: neutral, warm (El Niño) and cool (La Niña). While classifying El Niño and La Niña is relatively straightforward, El Niño events can be broadly classified into two types: Central Pacific (CP) and Eastern Pacific (EP). Differentiating between CP and EP events is currently dependent on both the method and observational dataset used. In this study, we create a new classification scheme using supervised machine learning trained on 18 observational and reanalysis products. This builds on previous work by identifying classes of events using the temporal evolution of sea surface temperature in multiple regions across the tropical Pacific. By applying this new classifier to seven single model initial-condition large ensembles (SMILEs) we investigate both the internal variability and forced changes in each type of ENSO event, where events identified behave similar to those observed. It is currently debated whether the observed increase in the frequency of CP events after the late 1970s is due to climate change. We found it to be within the range of internal variability in the SMILEs. When considering future changes, we do not project a change in CP frequency or amplitude under a strong warming scenario (RCP8.5/SSP370) and we find model differences in EP El Niño and La Niña frequency and amplitude projections. Finally, we find that models show differences in projected precipitation and SST pattern changes for each event type that do not seem to be linked to the Pacific mean state SST change, although the SST and precipitation changes in individual SMILEs are linked. Our work demonstrates the value of combining machine learning with climate models, and highlights the need to use SMILEs when evaluating ENSO in climate models due to the large spread of results found within a single model due to internal variability alone.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-2021-105-supplement","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract. The El Niño Southern Oscillation (ENSO) occurs in three phases: neutral, warm (El Niño) and cool (La Niña). While classifying El Niño and La Niña is relatively straightforward, El Niño events can be broadly classified into two types: Central Pacific (CP) and Eastern Pacific (EP). Differentiating between CP and EP events is currently dependent on both the method and observational dataset used. In this study, we create a new classification scheme using supervised machine learning trained on 18 observational and reanalysis products. This builds on previous work by identifying classes of events using the temporal evolution of sea surface temperature in multiple regions across the tropical Pacific. By applying this new classifier to seven single model initial-condition large ensembles (SMILEs) we investigate both the internal variability and forced changes in each type of ENSO event, where events identified behave similar to those observed. It is currently debated whether the observed increase in the frequency of CP events after the late 1970s is due to climate change. We found it to be within the range of internal variability in the SMILEs. When considering future changes, we do not project a change in CP frequency or amplitude under a strong warming scenario (RCP8.5/SSP370) and we find model differences in EP El Niño and La Niña frequency and amplitude projections. Finally, we find that models show differences in projected precipitation and SST pattern changes for each event type that do not seem to be linked to the Pacific mean state SST change, although the SST and precipitation changes in individual SMILEs are linked. Our work demonstrates the value of combining machine learning with climate models, and highlights the need to use SMILEs when evaluating ENSO in climate models due to the large spread of results found within a single model due to internal variability alone.
“将机器学习和SMILE结合起来,对ENSO事件进行分类、更好地理解和预测变化”的补充材料
摘要厄尔尼诺南方涛动(ENSO)分为三个阶段:中性、温暖(厄尔尼诺)和凉爽(拉尼娜)。虽然对厄尔尼诺和拉尼娜的分类相对简单,但厄尔尼诺事件可大致分为两类:中太平洋(CP)和东太平洋(EP)。CP和EP事件之间的区别目前取决于所使用的方法和观测数据集。在这项研究中,我们使用在18个观测和再分析产品上训练的监督机器学习创建了一个新的分类方案。这是在先前工作的基础上,通过使用热带太平洋多个地区海面温度的时间演变来确定事件类别。通过将这一新分类器应用于七个单模型初始条件大集合(SMILE),我们研究了每种类型ENSO事件的内部可变性和强迫变化,其中识别的事件表现与观察到的事件相似。20世纪70年代末后观测到的CP事件频率增加是否是由于气候变化,目前仍存在争议。我们发现它在SMILE的内部变异范围内。在考虑未来的变化时,我们没有预测强变暖情景下CP频率或振幅的变化(RCP8.5/SPS370),我们发现EP El Niño和La Niña频率和振幅预测的模型差异。最后,我们发现模型显示了每种事件类型的预计降水量和SST模式变化的差异,这些差异似乎与太平洋平均态SST变化无关,尽管SST和单个SMILE的降水量变化是相关的。我们的工作证明了将机器学习与气候模型相结合的价值,并强调了在评估气候模型中的ENSO时使用SMILEs的必要性,因为仅由于内部可变性,在单个模型中发现的结果分布很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信