Optimization of a Two-Layer 3D Coil Structure with Uniform Magnetic Field

IF 1.6 Q4 ENERGY & FUELS
D. Vinko, D. Bilandžija, Vanja Mandrić Radivojević
{"title":"Optimization of a Two-Layer 3D Coil Structure with Uniform Magnetic Field","authors":"D. Vinko, D. Bilandžija, Vanja Mandrić Radivojević","doi":"10.1155/2021/6303628","DOIUrl":null,"url":null,"abstract":"Conventional magnetically coupled resonant wireless power transfer systems are faced with resonant frequency splitting phenomena and impedance mismatch when a receiving coil is placed at misaligned position. These problems can be avoided by using uniform magnetic field distribution at receiving plane. In this paper, a novel 3D transmitting coil structure with improved uniform magnetic field distribution is proposed based on a developed optimization method. The goal is to maximize the average magnetic field strength and uniform magnetic field section of the receiving plane. Hence, figures of merit (FoM1 and FoM2) are introduced and defined as product of average magnetic field strength and length or surface along which uniform magnetic field is generated, respectively. The validity of the optimization method is verified through laboratory measurements performed on the fabricated coils driven by signal generator at operating frequency of 150 kHz. Depending on the allowed ripple value and predefined coil proportions, the proposed transmitting coil structure gives the uniform magnetic field distribution across 50% to 90% of the receiving plane.","PeriodicalId":43105,"journal":{"name":"Wireless Power Transfer","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Power Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6303628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

Conventional magnetically coupled resonant wireless power transfer systems are faced with resonant frequency splitting phenomena and impedance mismatch when a receiving coil is placed at misaligned position. These problems can be avoided by using uniform magnetic field distribution at receiving plane. In this paper, a novel 3D transmitting coil structure with improved uniform magnetic field distribution is proposed based on a developed optimization method. The goal is to maximize the average magnetic field strength and uniform magnetic field section of the receiving plane. Hence, figures of merit (FoM1 and FoM2) are introduced and defined as product of average magnetic field strength and length or surface along which uniform magnetic field is generated, respectively. The validity of the optimization method is verified through laboratory measurements performed on the fabricated coils driven by signal generator at operating frequency of 150 kHz. Depending on the allowed ripple value and predefined coil proportions, the proposed transmitting coil structure gives the uniform magnetic field distribution across 50% to 90% of the receiving plane.
均匀磁场下两层三维线圈结构的优化
传统的磁耦合谐振式无线电力传输系统在接收线圈放置错位时存在谐振分频现象和阻抗失配问题。在接收面上采用均匀的磁场分布可以避免这些问题。本文提出了一种改进磁场均匀分布的新型三维发射线圈结构。目标是使接收面的平均磁场强度和均匀磁场截面最大化。因此,引入优值(FoM1和FoM2),并将其定义为平均磁场强度与产生均匀磁场的长度或表面的乘积。通过对工作频率为150khz、由信号发生器驱动的预制线圈的实验测量,验证了优化方法的有效性。根据允许的纹波值和预定义的线圈比例,所提出的发射线圈结构在接收平面的50%到90%上提供均匀的磁场分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wireless Power Transfer
Wireless Power Transfer ENERGY & FUELS-
CiteScore
2.50
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信