J. Sadeghi, Mohammad Seyedkazemi, A. Khajehdezfuly
{"title":"Effect of uncertainty of fastening systems properties on wheel/rail dynamic force","authors":"J. Sadeghi, Mohammad Seyedkazemi, A. Khajehdezfuly","doi":"10.1590/1679-78256537","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, effect of uncertainty of fastening system properties on the wheel/rail dynamic force (WRDF) was investigated. For this purpose, two deterministic and epistemic models of vehicle/track interaction were developed, using the finite element method. Validity of the results obtained from the models was shown through comparison between the model results and those obtained from field tests. The effects of uncertainty of fastening system properties on the WRDF in different axle loads, vehicle speeds, rail irregularities and various track maintenance conditions were derived through probability and sensitivity analyses. Using the results obtained, some contours were developed to obtain the amplification of WRDF (due the uncertainty of fastening system properties) as a function of vehicle axle load, vehicle speed and track maintenance conditions.","PeriodicalId":18192,"journal":{"name":"Latin American Journal of Solids and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1590/1679-78256537","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this paper, effect of uncertainty of fastening system properties on the wheel/rail dynamic force (WRDF) was investigated. For this purpose, two deterministic and epistemic models of vehicle/track interaction were developed, using the finite element method. Validity of the results obtained from the models was shown through comparison between the model results and those obtained from field tests. The effects of uncertainty of fastening system properties on the WRDF in different axle loads, vehicle speeds, rail irregularities and various track maintenance conditions were derived through probability and sensitivity analyses. Using the results obtained, some contours were developed to obtain the amplification of WRDF (due the uncertainty of fastening system properties) as a function of vehicle axle load, vehicle speed and track maintenance conditions.