Optimality Conditions for Constrained Minimax Optimization

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhong Dai, Liwei Zhang
{"title":"Optimality Conditions for Constrained Minimax Optimization","authors":"Yuhong Dai, Liwei Zhang","doi":"10.4208/csiam-am.2020-0014","DOIUrl":null,"url":null,"abstract":"Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, numerical partial differential equations and optimality conditions of equality constrained optimization. For the unconstrained continuous nonconvex-nonconcave situation, Jin, Netrapalli and Jordan (2019) carefully considered the very basic question: what is a proper definition of local optima of a minimax optimization problem, and proposed a proper definition of local optimality called local minimax. We shall extend the definition of local minimax point to constrained nonconvex-nonconcave minimax optimization problems. By analyzing Jacobian uniqueness conditions for the lower-level maximization problem and the strong regularity of Karush-Kuhn-Tucker conditions of the maximization problem, we provide both necessary optimality conditions and sufficient optimality conditions for the local minimax points of constrained minimax optimization problems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.2020-0014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18

Abstract

Minimax optimization problems arises from both modern machine learning including generative adversarial networks, adversarial training and multi-agent reinforcement learning, as well as from tradition research areas such as saddle point problems, numerical partial differential equations and optimality conditions of equality constrained optimization. For the unconstrained continuous nonconvex-nonconcave situation, Jin, Netrapalli and Jordan (2019) carefully considered the very basic question: what is a proper definition of local optima of a minimax optimization problem, and proposed a proper definition of local optimality called local minimax. We shall extend the definition of local minimax point to constrained nonconvex-nonconcave minimax optimization problems. By analyzing Jacobian uniqueness conditions for the lower-level maximization problem and the strong regularity of Karush-Kuhn-Tucker conditions of the maximization problem, we provide both necessary optimality conditions and sufficient optimality conditions for the local minimax points of constrained minimax optimization problems.
约束极大极小优化的最优性条件
Minimax优化问题既源于现代机器学习,包括生成对抗性网络、对抗性训练和多智能体强化学习,也源于鞍点问题、数值偏微分方程和等式约束优化的最优性条件等传统研究领域。对于无约束连续非凸非凹情形,Jin、Netrapali和Jordan(2019)仔细考虑了一个非常基本的问题:什么是极小极大优化问题的局部最优的适当定义,并提出了一个称为局部极小极大的局部最优性的适当定义。我们将把局部极小极大点的定义推广到约束的非凸非凹极小极大优化问题。通过分析下层最大化问题的雅可比唯一性条件和最大化问题Karush-Kuhn-Tucker条件的强正则性,我们给出了约束极小极大优化问题的局部极小极大点的必要最优性条件和充分最优性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信