{"title":"Explicit harmonic morphisms and p-harmonic functions from the complex and quaternionic Grassmannians","authors":"Elsa Ghandour, Sigmundur Gudmundsson","doi":"10.1007/s10455-023-09919-8","DOIUrl":null,"url":null,"abstract":"<div><p>We construct explicit complex-valued <i>p</i>-harmonic functions and harmonic morphisms on the classical compact symmetric complex and quaternionic Grassmannians. The ingredients for our construction method are joint eigenfunctions of the classical Laplace–Beltrami and the so-called conformality operator. A known duality principle implies that these <i>p</i>-harmonic functions and harmonic morphisms also induce such solutions on the Riemannian symmetric non-compact dual spaces.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"64 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09919-8.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09919-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
We construct explicit complex-valued p-harmonic functions and harmonic morphisms on the classical compact symmetric complex and quaternionic Grassmannians. The ingredients for our construction method are joint eigenfunctions of the classical Laplace–Beltrami and the so-called conformality operator. A known duality principle implies that these p-harmonic functions and harmonic morphisms also induce such solutions on the Riemannian symmetric non-compact dual spaces.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.