Explicit harmonic morphisms and p-harmonic functions from the complex and quaternionic Grassmannians

IF 0.6 3区 数学 Q3 MATHEMATICS
Elsa Ghandour, Sigmundur Gudmundsson
{"title":"Explicit harmonic morphisms and p-harmonic functions from the complex and quaternionic Grassmannians","authors":"Elsa Ghandour,&nbsp;Sigmundur Gudmundsson","doi":"10.1007/s10455-023-09919-8","DOIUrl":null,"url":null,"abstract":"<div><p>We construct explicit complex-valued <i>p</i>-harmonic functions and harmonic morphisms on the classical compact symmetric complex and quaternionic Grassmannians. The ingredients for our construction method are joint eigenfunctions of the classical Laplace–Beltrami and the so-called conformality operator. A known duality principle implies that these <i>p</i>-harmonic functions and harmonic morphisms also induce such solutions on the Riemannian symmetric non-compact dual spaces.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"64 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09919-8.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09919-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We construct explicit complex-valued p-harmonic functions and harmonic morphisms on the classical compact symmetric complex and quaternionic Grassmannians. The ingredients for our construction method are joint eigenfunctions of the classical Laplace–Beltrami and the so-called conformality operator. A known duality principle implies that these p-harmonic functions and harmonic morphisms also induce such solutions on the Riemannian symmetric non-compact dual spaces.

复格拉斯曼和四元数格拉斯曼的显调和态射和p-调和函数
我们在经典紧致对称复形和四元数Grassmann上构造了显式复值p-调和函数和调和态射。我们构造方法的成分是经典拉普拉斯-贝尔特拉米算子和所谓的保形算子的联合本征函数。一个已知的对偶原理意味着这些p-调和函数和调和态射也在黎曼对称非紧对偶空间上导出了这样的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信