Decay in full von Kármán beam with temperature and microtemperatures effects

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Aouadi, Souad Guerine
{"title":"Decay in full von Kármán beam with temperature and microtemperatures effects","authors":"M. Aouadi, Souad Guerine","doi":"10.1051/mmnp/2023002","DOIUrl":null,"url":null,"abstract":"In this article we derive the equations that constitute the mathematical model of the full von\nK\\'{a}rm\\'{a}n beam with  temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory.   Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory\nof monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived\nproblem.  Then using the  multiplier method, we show that solutions decay exponentially.\nFinally we consider the case  of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce  exponential stability.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2023002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

Abstract

In this article we derive the equations that constitute the mathematical model of the full von K\'{a}rm\'{a}n beam with  temperature and microtemperatures effects. The nonlinear governing equations are derived by using Hamilton principle in the framework of Euler–Bernoulli beam theory.   Under quite general assumptions on nonlinear damping function acting on the transversal component and based on nonlinear semigroups and the theory of monotone operators, we establish existence and uniqueness of weak and strong solutions to the derived problem.  Then using the  multiplier method, we show that solutions decay exponentially. Finally we consider the case  of zero thermal conductivity and we show that the dissipation given only by the microtemperatures is strong enough to produce  exponential stability.
具有温度和微温度效应的全von Kármán光束的衰变
本文推导了具有温度和微温度效应的全vonK\'{a} m\'{a}n光束的数学模型。在欧拉-伯努利梁理论的框架下,利用Hamilton原理推导了非线性控制方程。在非线性阻尼函数作用于横向分量的相当一般的假设下,基于非线性半群和单调算子理论,我们建立了所导出问题的弱解和强解的存在唯一性。然后利用乘数法,我们证明了解呈指数衰减。最后,我们考虑了导热系数为零的情况,并证明了仅由微温度给出的耗散足以产生指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信