Finite p-groups which are non-inner nilpotent

Q4 Mathematics
Masoumeh Ganjali, A. Erfanian, I. Muchtadi-Alamsyah
{"title":"Finite p-groups which are non-inner nilpotent","authors":"Masoumeh Ganjali, A. Erfanian, I. Muchtadi-Alamsyah","doi":"10.24193/mathcluj.2022.1.09","DOIUrl":null,"url":null,"abstract":"A group G is called a non-inner nilpotent group, whenever it is nilpotent with respect to a non-inner automorphism. In 2018, all finitely generated abelian non-inner nilpotent groups have been classified. Actually, the authors proved that a finitely generated abelian group G is a non-inner nilpotent group, if G is not isomorphic to cyclic groups Z_p_1p_2...p_t and Z, for a positive integer t and distinct primes p_1, p_2,..., p_t. We conjecture that all finite non-abelian p-groups are non-inner nilpotent and we prove this conjecture for finite $p$-groups of nilpotency class 2 or of co-class 2.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2022.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

A group G is called a non-inner nilpotent group, whenever it is nilpotent with respect to a non-inner automorphism. In 2018, all finitely generated abelian non-inner nilpotent groups have been classified. Actually, the authors proved that a finitely generated abelian group G is a non-inner nilpotent group, if G is not isomorphic to cyclic groups Z_p_1p_2...p_t and Z, for a positive integer t and distinct primes p_1, p_2,..., p_t. We conjecture that all finite non-abelian p-groups are non-inner nilpotent and we prove this conjecture for finite $p$-groups of nilpotency class 2 or of co-class 2.
非内幂零的有限p群
群G对于非内自同构是幂零的,就称为非内幂零群。2018年,所有有限生成的阿贝尔非内幂零群都被分类。实际上,作者证明了有限生成阿贝尔群G是一个非内幂零群,如果G不同构于循环群Z_p_1p_2…p_t和Z,对于正整数t和不同质数p_1, p_2,…, p_t。我们猜想所有有限非阿贝尔p群都是非内幂零的,并证明了幂零类2或协2的有限p群的这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信