An approach of dynamic response analysis of nonlinear structures based on least square Volterra kernel function identification

IF 2.7 4区 工程技术 Q2 TRANSPORTATION SCIENCE & TECHNOLOGY
Zhenhao Zhang, Zhenpeng Zhao, Jun Xiong, Fuming Wang, Yi Zeng, Bingfang Zhao, Lu Ke
{"title":"An approach of dynamic response analysis of nonlinear structures based on least square Volterra kernel function identification","authors":"Zhenhao Zhang, Zhenpeng Zhao, Jun Xiong, Fuming Wang, Yi Zeng, Bingfang Zhao, Lu Ke","doi":"10.1093/tse/tdac046","DOIUrl":null,"url":null,"abstract":"\n Analysis of the dynamic response of a complex nonlinear system is always a difficult problem. By using Volterra functional series to describe a nonlinear system, its response analysis can be similar to using Fourier/Laplace transform and linear transfer function method to analyze a linear system's response. In this paper, a dynamic response analysis method for nonlinear systems based on Volterra series is developed. Firstly, the recursive formula of the least square method is established to solve the Volterra kernel function vector, and the corresponding MATLAB program is compiled. Then, the Volterra kernel vector corresponding to the nonlinear response of a structure under seismic excitation is identified, and the accuracy and applicability of using the kernel vector to predict the response of a nonlinear structure are analyzed. The results show that the Volterra kernel function identified by the derived recursive formula can accurately describe the nonlinear response characteristics of a structure under an excitation. For a general nonlinear system, the first three order Volterra kernel function can relatively accurately express its nonlinear response characteristics. In addition, the obtained Volterra kernel function can be used to accurately predict the nonlinear response of a structure under the similar type of dynamic load.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analysis of the dynamic response of a complex nonlinear system is always a difficult problem. By using Volterra functional series to describe a nonlinear system, its response analysis can be similar to using Fourier/Laplace transform and linear transfer function method to analyze a linear system's response. In this paper, a dynamic response analysis method for nonlinear systems based on Volterra series is developed. Firstly, the recursive formula of the least square method is established to solve the Volterra kernel function vector, and the corresponding MATLAB program is compiled. Then, the Volterra kernel vector corresponding to the nonlinear response of a structure under seismic excitation is identified, and the accuracy and applicability of using the kernel vector to predict the response of a nonlinear structure are analyzed. The results show that the Volterra kernel function identified by the derived recursive formula can accurately describe the nonlinear response characteristics of a structure under an excitation. For a general nonlinear system, the first three order Volterra kernel function can relatively accurately express its nonlinear response characteristics. In addition, the obtained Volterra kernel function can be used to accurately predict the nonlinear response of a structure under the similar type of dynamic load.
基于最小二乘Volterra核函数辨识的非线性结构动力响应分析方法
复杂非线性系统的动态响应分析一直是一个难题。用Volterra泛函级数来描述非线性系统,其响应分析可以类似于用傅里叶/拉普拉斯变换和线性传递函数法来分析线性系统的响应。本文提出了一种基于Volterra级数的非线性系统动态响应分析方法。首先,建立求解Volterra核函数向量的最小二乘法递推公式,并编制相应的MATLAB程序。然后,识别了地震作用下结构非线性响应所对应的Volterra核向量,分析了用核向量预测非线性结构响应的准确性和适用性。结果表明,用所推导的递推公式识别的Volterra核函数能准确地描述结构在激励作用下的非线性响应特性。对于一般非线性系统,前三阶Volterra核函数能较准确地表达其非线性响应特性。此外,所得的Volterra核函数可用于准确预测结构在类似动荷载作用下的非线性响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transportation Safety and Environment
Transportation Safety and Environment TRANSPORTATION SCIENCE & TECHNOLOGY-
CiteScore
3.90
自引率
13.60%
发文量
32
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信