On the theory of generalized Ulrich modules

IF 0.7 3区 数学 Q2 MATHEMATICS
Cleto B. Miranda-Neto, D. S. Queiroz, Thyago S. Souza
{"title":"On the theory of generalized Ulrich modules","authors":"Cleto B. Miranda-Neto, D. S. Queiroz, Thyago S. Souza","doi":"10.2140/pjm.2023.323.307","DOIUrl":null,"url":null,"abstract":"In this paper we further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem of when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo-Mumford regularity of its Rees module.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.323.307","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we further develop the theory of generalized Ulrich modules introduced in 2014 by Goto et al. Our main goal is to address the problem of when the operations of taking the Hom functor and horizontal linkage preserve the Ulrich property. One of the applications is a new characterization of quadratic hypersurface rings. Moreover, in the Gorenstein case, we deduce that applying linkage to sufficiently high syzygy modules of Ulrich ideals yields Ulrich modules. Finally, we explore connections to the theory of modules with minimal multiplicity, and as a byproduct we determine the Chern number of an Ulrich module as well as the Castelnuovo-Mumford regularity of its Rees module.
关于广义Ulrich模的理论
本文进一步发展了Goto等人在2014年提出的广义Ulrich模理论。我们的主要目标是解决取Hom函子和水平连杆的操作何时保持Ulrich性质的问题。其中一个应用是二次超曲面环的新表征。此外,在Gorenstein情况下,我们推导出将连杆应用于Ulrich理想的足够高的协同模会产生Ulrich模。最后,我们探索了与最小多重模理论的联系,作为副产品,我们确定了Ulrich模的Chern数以及其Rees模的Castelnuovo-Mumford正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信