Wongduan Sroysee , Suticha Chunta , Maliwan Amatatongchai , Peter A. Lieberzeit
{"title":"Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors","authors":"Wongduan Sroysee , Suticha Chunta , Maliwan Amatatongchai , Peter A. Lieberzeit","doi":"10.1016/j.phmed.2019.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Two different molecularly imprinted polymers (MIP) were designed to selectively bind the insecticides carbofuran (CBF) and profenofos (PFF). CBF-MIP are based on methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile (AIBN) as an initiator. The PFF-MIP comprised of polyurethane based on poly (4-vinylphenol) (PVP), and diphenyl methane-4,4′-di-isocyanate (DPDI) as functional monomers, phloroglucinol (PG) as the cross-linker, and diphenylmethane (DPM) as the porogen. For sensor measurement, MIPs were spin-coated onto one electrode pair of a dual-electrode QCM, while the second pair was spin-coated with NIPs. Fourier transform infrared (FT-IR) spectroscopy confirms successful template removal from the polymer matrix. The resulting CBF- and PFF-MIP coated onto quartz crystal microbalances (QCMs) lead to pesticide QCM sensors revealing the following analytical characteristics, respectively: dynamic detection range of 0.5–1000 μM for CBF-MIP and 10–1000 μM for PFF-MIP. In both cases, the MIP exhibit roughly ten times higher sensor signals, than the corresponding non-imprinted polymers (NIP).</p></div>","PeriodicalId":37787,"journal":{"name":"Physics in Medicine","volume":"7 ","pages":"Article 100016"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.phmed.2019.100016","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352451019300034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 28
Abstract
Two different molecularly imprinted polymers (MIP) were designed to selectively bind the insecticides carbofuran (CBF) and profenofos (PFF). CBF-MIP are based on methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and azobisisobutyronitrile (AIBN) as an initiator. The PFF-MIP comprised of polyurethane based on poly (4-vinylphenol) (PVP), and diphenyl methane-4,4′-di-isocyanate (DPDI) as functional monomers, phloroglucinol (PG) as the cross-linker, and diphenylmethane (DPM) as the porogen. For sensor measurement, MIPs were spin-coated onto one electrode pair of a dual-electrode QCM, while the second pair was spin-coated with NIPs. Fourier transform infrared (FT-IR) spectroscopy confirms successful template removal from the polymer matrix. The resulting CBF- and PFF-MIP coated onto quartz crystal microbalances (QCMs) lead to pesticide QCM sensors revealing the following analytical characteristics, respectively: dynamic detection range of 0.5–1000 μM for CBF-MIP and 10–1000 μM for PFF-MIP. In both cases, the MIP exhibit roughly ten times higher sensor signals, than the corresponding non-imprinted polymers (NIP).
期刊介绍:
The scope of Physics in Medicine consists of the application of theoretical and practical physics to medicine, physiology and biology. Topics covered are: Physics of Imaging Ultrasonic imaging, Optical imaging, X-ray imaging, Fluorescence Physics of Electromagnetics Neural Engineering, Signal analysis in Medicine, Electromagnetics and the nerve system, Quantum Electronics Physics of Therapy Ultrasonic therapy, Vibrational medicine, Laser Physics Physics of Materials and Mechanics Physics of impact and injuries, Physics of proteins, Metamaterials, Nanoscience and Nanotechnology, Biomedical Materials, Physics of vascular and cerebrovascular diseases, Micromechanics and Micro engineering, Microfluidics in medicine, Mechanics of the human body, Rotary molecular motors, Biological physics, Physics of bio fabrication and regenerative medicine Physics of Instrumentation Engineering of instruments, Physical effects of the application of instruments, Measurement Science and Technology, Physics of micro-labs and bioanalytical sensor devices, Optical instrumentation, Ultrasound instruments Physics of Hearing and Seeing Acoustics and hearing, Physics of hearing aids, Optics and vision, Physics of vision aids Physics of Space Medicine Space physiology, Space medicine related Physics.