A narrative review on radiotherapy practice in the era of artificial intelligence: how relevant is the medical physicist?

Eric Naab Manson, A. N. Mumuni, E. Fiagbedzi, I. Shirazu, H. Sulemana
{"title":"A narrative review on radiotherapy practice in the era of artificial intelligence: how relevant is the medical physicist?","authors":"Eric Naab Manson, A. N. Mumuni, E. Fiagbedzi, I. Shirazu, H. Sulemana","doi":"10.21037/jmai-22-27","DOIUrl":null,"url":null,"abstract":"Background and Objective: Artificial intelligence (AI) uses computers and machines to simulate how the human mind makes decisions and solves problems. In radiotherapy practice, AI technologies continue to be promising in image registration, synthetic computed tomography (CT), image segmentation, motion management, treatment planning, and delivery procedures, patient follow-up and quality assurance (QA). This, therefore, provides a new window of opportunity to improve upon the accuracy and output times of the manual implementation of these procedures. The goal of this review was to explore how machine learning AI technologies in radiotherapy could affect the clinical practice of medical physicists. Methods: A narrative literature review was conducted from PubMed, Science Direct and Scopus using the search terms: in the English language within 6 months. Key Content and Findings: The roles of AI and the clinical medical physicist are complementary in radiotherapy practice. Both the medical physicists and AI technology are highly needed to support the full implementation and optimization of radiotherapy procedures. Conclusions: To achieve successful implementation of AI in radiotherapy and optimize radiotherapy procedures, clinical medical physicist should receive some compulsory training in AI technologies during their education and training. They should ultimately be involved in the incorporation of machine learning technologies in radiotherapy equipment. patient-specific dosimetric of patient treatment Dosimetric measurements in phantoms one of following detectors: portal imaging The third type of looks for delivery errors in log files generated during during delivery time-series linear quality","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/jmai-22-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background and Objective: Artificial intelligence (AI) uses computers and machines to simulate how the human mind makes decisions and solves problems. In radiotherapy practice, AI technologies continue to be promising in image registration, synthetic computed tomography (CT), image segmentation, motion management, treatment planning, and delivery procedures, patient follow-up and quality assurance (QA). This, therefore, provides a new window of opportunity to improve upon the accuracy and output times of the manual implementation of these procedures. The goal of this review was to explore how machine learning AI technologies in radiotherapy could affect the clinical practice of medical physicists. Methods: A narrative literature review was conducted from PubMed, Science Direct and Scopus using the search terms: in the English language within 6 months. Key Content and Findings: The roles of AI and the clinical medical physicist are complementary in radiotherapy practice. Both the medical physicists and AI technology are highly needed to support the full implementation and optimization of radiotherapy procedures. Conclusions: To achieve successful implementation of AI in radiotherapy and optimize radiotherapy procedures, clinical medical physicist should receive some compulsory training in AI technologies during their education and training. They should ultimately be involved in the incorporation of machine learning technologies in radiotherapy equipment. patient-specific dosimetric of patient treatment Dosimetric measurements in phantoms one of following detectors: portal imaging The third type of looks for delivery errors in log files generated during during delivery time-series linear quality
人工智能时代放疗实践的叙述性回顾:医学物理学家的相关性如何?
背景与目的:人工智能(AI)使用计算机和机器来模拟人类的思维如何做出决策和解决问题。在放疗实践中,人工智能技术在图像配准、合成计算机断层扫描(CT)、图像分割、运动管理、治疗计划和交付程序、患者随访和质量保证(QA)方面继续有前景。因此,这为提高手工执行这些程序的准确性和输出时间提供了新的机会。这篇综述的目的是探讨放射治疗中的机器学习人工智能技术如何影响医学物理学家的临床实践。方法:使用检索词:在PubMed、Science Direct和Scopus中检索6个月内的英文文献。关键内容和发现:人工智能和临床医学物理学家在放射治疗实践中的作用是互补的。需要医学物理学家和人工智能技术来支持放射治疗程序的全面实施和优化。结论:为实现人工智能在放疗中的成功应用,优化放疗程序,临床医学物理学家在教育和培训过程中应接受一定的人工智能技术强制性培训。他们最终应该参与将机器学习技术整合到放射治疗设备中。病人治疗的病人特异性剂量测量幻影中的剂量测量下列探测器之一:传送门成像第三种是在传送时间序列线性质量期间生成的日志文件中查找传送错误
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信