Angle-Resolved Time-of-Flight Electron Spectrometer Designed for Femtosecond Laser-Assisted Electron Scattering and Diffraction

Q3 Physics and Astronomy
Motoki Ishikawa, Kakuta Ishida, R. Kanya, K. Yamanouchi
{"title":"Angle-Resolved Time-of-Flight Electron Spectrometer Designed for Femtosecond Laser-Assisted Electron Scattering and Diffraction","authors":"Motoki Ishikawa, Kakuta Ishida, R. Kanya, K. Yamanouchi","doi":"10.3390/instruments7010004","DOIUrl":null,"url":null,"abstract":"We developed an apparatus for measuring kinetic energy and two-dimensional angular distributions of femtosecond laser-assisted electron scattering (LAES) signals with a high detection efficiency, consisting of a photocathode-type ultrashort pulsed electron gun, a gas injection nozzle, an angle-resolved time-of-flight analyzer, and a time-and-position sensitive electron detector. We also established an analysis method for obtaining the kinetic energy and two-dimensional angular distributions of scattered electrons from raw data of their flight times and the detected positions at the detector recorded using the newly developed apparatus. From the measurement of the LAES processes of Ar atoms in a femtosecond near-infrared intense laser field, we obtained a two-dimensional angular distribution image of the LAES signals and showed that the detection efficiency of the LAES signals was raised by a factor of 40 compared with that achieved before in 2010.","PeriodicalId":13582,"journal":{"name":"Instruments","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments7010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We developed an apparatus for measuring kinetic energy and two-dimensional angular distributions of femtosecond laser-assisted electron scattering (LAES) signals with a high detection efficiency, consisting of a photocathode-type ultrashort pulsed electron gun, a gas injection nozzle, an angle-resolved time-of-flight analyzer, and a time-and-position sensitive electron detector. We also established an analysis method for obtaining the kinetic energy and two-dimensional angular distributions of scattered electrons from raw data of their flight times and the detected positions at the detector recorded using the newly developed apparatus. From the measurement of the LAES processes of Ar atoms in a femtosecond near-infrared intense laser field, we obtained a two-dimensional angular distribution image of the LAES signals and showed that the detection efficiency of the LAES signals was raised by a factor of 40 compared with that achieved before in 2010.
用于飞秒激光辅助电子散射和衍射的角分辨飞行时间电子光谱仪
研制了一种具有高检测效率的飞秒激光辅助电子散射(LAES)信号动能和二维角分布测量装置,该装置由光电阴极型超短脉冲电子枪、气体喷射喷嘴、角度分辨飞行时间分析仪和时间位置敏感电子探测器组成。我们还建立了一种分析方法,可以从散射电子的飞行时间和探测位置的原始数据中获得散射电子的动能和二维角分布。通过对飞秒近红外强激光场中Ar原子LAES过程的测量,获得了LAES信号的二维角分布图像,结果表明,LAES信号的检测效率比2010年之前的检测效率提高了40倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Instruments
Instruments Physics and Astronomy-Instrumentation
CiteScore
2.60
自引率
0.00%
发文量
70
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信