{"title":"Tractable Lexical-Functional Grammar","authors":"Jürgen Wedekind, R. Kaplan","doi":"10.1162/coli_a_00384","DOIUrl":null,"url":null,"abstract":"The formalism for Lexical-Functional Grammar (LFG) was introduced in the 1980s as one of the first constraint-based grammatical formalisms for natural language. It has led to substantial contributions to the linguistic literature and to the construction of large-scale descriptions of particular languages. Investigations of its mathematical properties have shown that, without further restrictions, the recognition, emptiness, and generation problems are undecidable, and that they are intractable in the worst case even with commonly applied restrictions. However, grammars of real languages appear not to invoke the full expressive power of the formalism, as indicated by the fact that algorithms and implementations for recognition and generation have been developed that run—even for broad-coverage grammars—in typically polynomial time. This article formalizes some restrictions on the notation and its interpretation that are compatible with conventions and principles that have been implicit or informally stated in linguistic theory. We show that LFG grammars that respect these restrictions, while still suitable for the description of natural languages, are equivalent to linear context-free rewriting systems and allow for tractable computation.","PeriodicalId":55229,"journal":{"name":"Computational Linguistics","volume":"46 1","pages":"515-569"},"PeriodicalIF":3.7000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00384","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8
Abstract
The formalism for Lexical-Functional Grammar (LFG) was introduced in the 1980s as one of the first constraint-based grammatical formalisms for natural language. It has led to substantial contributions to the linguistic literature and to the construction of large-scale descriptions of particular languages. Investigations of its mathematical properties have shown that, without further restrictions, the recognition, emptiness, and generation problems are undecidable, and that they are intractable in the worst case even with commonly applied restrictions. However, grammars of real languages appear not to invoke the full expressive power of the formalism, as indicated by the fact that algorithms and implementations for recognition and generation have been developed that run—even for broad-coverage grammars—in typically polynomial time. This article formalizes some restrictions on the notation and its interpretation that are compatible with conventions and principles that have been implicit or informally stated in linguistic theory. We show that LFG grammars that respect these restrictions, while still suitable for the description of natural languages, are equivalent to linear context-free rewriting systems and allow for tractable computation.
期刊介绍:
Computational Linguistics, the longest-running publication dedicated solely to the computational and mathematical aspects of language and the design of natural language processing systems, provides university and industry linguists, computational linguists, AI and machine learning researchers, cognitive scientists, speech specialists, and philosophers with the latest insights into the computational aspects of language research.