Porosity prediction from X-ray computed tomography logs (RHOB and PEF) using Artificial Neural Networks (ANN)

IF 0.5 Q4 GEOLOGY
A. F. Ortiz, E. Herrera, N. Santos
{"title":"Porosity prediction from X-ray computed tomography logs (RHOB and PEF) using Artificial Neural Networks (ANN)","authors":"A. F. Ortiz, E. Herrera, N. Santos","doi":"10.18273/revbol.v42n3-2020006","DOIUrl":null,"url":null,"abstract":"This work presents a method for rock porosity prediction from the X-ray computed tomography (CT) logs obtained using a double energy approach, bulk density (RHOB) and photoelectric factor (PEF). The proposed method seeks to correlate the known porosity from the Routine Core Analysis (RCAL) with RHOB and PEF high-resolution logs, as the response of these two measurements depends on the volumetric quantity of different rock materials and of the volume of its porous space. Artificial Neural Networks (ANNs) are trained so they can predict porosity from CT logs at a high resolution (0.625 mm). The ANNs validation and regression plots show that porosity predictions are good. High-resolution porosity models linked to CT images could contribute to enhancing the petrophysics model as they allow a more refined identification of intervals of interest due to the detailed measurement.","PeriodicalId":44188,"journal":{"name":"Boletin de Geologia","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revbol.v42n3-2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents a method for rock porosity prediction from the X-ray computed tomography (CT) logs obtained using a double energy approach, bulk density (RHOB) and photoelectric factor (PEF). The proposed method seeks to correlate the known porosity from the Routine Core Analysis (RCAL) with RHOB and PEF high-resolution logs, as the response of these two measurements depends on the volumetric quantity of different rock materials and of the volume of its porous space. Artificial Neural Networks (ANNs) are trained so they can predict porosity from CT logs at a high resolution (0.625 mm). The ANNs validation and regression plots show that porosity predictions are good. High-resolution porosity models linked to CT images could contribute to enhancing the petrophysics model as they allow a more refined identification of intervals of interest due to the detailed measurement.
基于人工神经网络(ANN)的x射线计算机断层扫描测井(RHOB和PEF)孔隙度预测
这项工作提出了一种从X射线计算机断层扫描(CT)测井中预测岩石孔隙度的方法,该测井使用体积密度(RHOB)和光电因子(PEF)的双能量方法获得。所提出的方法试图将常规岩心分析(RCAL)中的已知孔隙度与RHOB和PEF高分辨率测井相关联,因为这两种测量的响应取决于不同岩石材料的体积量及其多孔空间的体积。人工神经网络(Ann)经过训练,可以从CT测井中以高分辨率(0.625 mm)预测孔隙度。人工神经网络的验证和回归图表明孔隙度预测是好的。与CT图像相关的高分辨率孔隙度模型有助于增强岩石物理模型,因为它们允许由于详细的测量而对感兴趣的层段进行更精细的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
15
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信