Displacement Error Characteristics of 500-hPa Cutoff Lows in Operational GFS Forecasts

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Kevin M. Lupo, C. Schwartz, G. Romine
{"title":"Displacement Error Characteristics of 500-hPa Cutoff Lows in Operational GFS Forecasts","authors":"Kevin M. Lupo, C. Schwartz, G. Romine","doi":"10.1175/waf-d-22-0224.1","DOIUrl":null,"url":null,"abstract":"\nCutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0–240-hour 0.25° GFS forecasts during April 2015–March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short- to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0224.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cutoff lows are often associated with high-impact weather; therefore, it is critical that operational numerical weather prediction systems accurately represent the evolution of these features. However, medium-range forecasts of upper-level features using the Global Forecast System (GFS) are often subjectively characterized by excessive synoptic progressiveness, i.e., a tendency to advance troughs and cutoff lows too quickly downstream. To better understand synoptic progressiveness errors, this research quantifies seven years of 500-hPa cutoff low position errors over the globe, with the goal of objectively identifying regions where synoptic progressiveness errors are common and how frequently these errors occur. Specifically, 500-hPa features are identified and tracked in 0–240-hour 0.25° GFS forecasts during April 2015–March 2022 using an objective cutoff low and trough identification scheme and compared to corresponding 500-hPa GFS analyses. In the Northern Hemisphere, cutoff lows are generally underrepresented in forecasts compared to verifying analyses, particularly over continental midlatitude regions. Features identified in short- to long-range forecasts are generally associated with eastward zonal position errors over the conterminous United States and northern Asia, particularly during the spring and autumn. Similarly, cutoff lows over the Southern Hemisphere midlatitudes are characterized by an eastward displacement bias during all seasons.
GFS运行预报中500hPa截断低的位移误差特征
截止低点通常与高影响天气有关;因此,运行中的数值天气预报系统准确地表示这些特征的演变是至关重要的。然而,使用全球预报系统(GFS)对高层特征进行的中期预报往往主观上具有过度天气先进性的特征,即有向下游过快推进波谷和截止低点的趋势。为了更好地理解天气进步性误差,本研究量化了全球7年来500百帕的截断低点误差,目的是客观地确定天气进步性错误常见的地区以及这些错误发生的频率。具体而言,在2015年4月至2022年3月的0–240小时0.25°GFS预测中,使用客观截止低槽识别方案识别和跟踪了500 hPa特征,并与相应的500 hPa GFS分析进行了比较。在北半球,与验证分析相比,截止低点在预测中的代表性通常不足,尤其是在大陆中纬度地区。短期到长期预报中确定的特征通常与毗邻的美国和亚洲北部向东的纬向位置误差有关,特别是在春季和秋季。同样,南半球中纬度的截止低点在所有季节都具有向东位移的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Weather and Forecasting
Weather and Forecasting 地学-气象与大气科学
CiteScore
5.20
自引率
17.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信