On the solutions to p-Poisson equation with Robin boundary conditions when p goes to +∞

IF 3.2 1区 数学 Q1 MATHEMATICS
Vincenzo Amato, Alba Lia Masiello, C. Nitsch, C. Trombetti
{"title":"On the solutions to p-Poisson equation with Robin boundary conditions when p goes to +∞","authors":"Vincenzo Amato, Alba Lia Masiello, C. Nitsch, C. Trombetti","doi":"10.1515/anona-2022-0258","DOIUrl":null,"url":null,"abstract":"Abstract We study the behaviour, when p → + ∞ p\\to +\\infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞ \\infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum f f belongs to L ∞ ( Ω ) {L}^{\\infty }\\left(\\Omega ) and we study the behaviour of solutions when p → ∞ p\\to \\infty .","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":"11 1","pages":"1631 - 1649"},"PeriodicalIF":3.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0258","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We study the behaviour, when p → + ∞ p\to +\infty , of the first p-Laplacian eigenvalues with Robin boundary conditions and the limit of the associated eigenfunctions. We prove that the limit of the eigenfunctions is a viscosity solution to an eigenvalue problem for the so-called ∞ \infty -Laplacian. Moreover, in the second part of the article, we focus our attention on the p-Poisson equation when the datum f f belongs to L ∞ ( Ω ) {L}^{\infty }\left(\Omega ) and we study the behaviour of solutions when p → ∞ p\to \infty .
p趋于+∞时具有Robin边界条件的p- poisson方程的解
研究了当p→+∞p \to + \infty时具有Robin边界条件的第一个p-拉普拉斯特征值的行为及其相关特征函数的极限。我们证明了本征函数的极限是一个本征值问题的粘滞解对于所谓的∞\infty -拉普拉斯算子。此外,在文章的第二部分中,我们重点关注了当基准f f属于L∞(Ω) {L}^ {\infty}\left (\Omega)时的p- poisson方程,并研究了p→∞p \to\infty时解的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信