Localized kriging parameters optimization using local uncertainty

Pub Date : 2023-02-24 DOI:10.1080/25726838.2023.2178803
Ricardo Hundelshaussen Rubio, J. F. Coimbra Leite Costa, Diego Machado Marques, Marcel Antônio Arcari Bassani
{"title":"Localized kriging parameters optimization using local uncertainty","authors":"Ricardo Hundelshaussen Rubio, J. F. Coimbra Leite Costa, Diego Machado Marques, Marcel Antônio Arcari Bassani","doi":"10.1080/25726838.2023.2178803","DOIUrl":null,"url":null,"abstract":"ABSTRACT Estimates of natural phenomena with spatial correlation, i.e. stationary domains, are more precise and accurate when performed using geostatistical techniques (e.g. kriging). The kriging estimates require the definition of the spatial continuity model and a search strategy. Many techniques, such as unfolding and dynamic anisotropy, try to give some improvement in the estimates, considering the variations of the distributions in the geological bodies, however, the definition of the search strategy in the other parameters is unique. This study presents an alternative to this, called Localized Kriging Parameters optimization (LKPO). LKPO considers the best local kriging parameters settings (block by block) through the local uncertainly (simulations). To illustrate this methodology, a synthetic dataset is presented, and the results are compared with the methodologies currently available in the geostatistical literature. Validation checks show a significant improvement in precision and accuracy on the estimates when using local kriging parameters.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726838.2023.2178803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Estimates of natural phenomena with spatial correlation, i.e. stationary domains, are more precise and accurate when performed using geostatistical techniques (e.g. kriging). The kriging estimates require the definition of the spatial continuity model and a search strategy. Many techniques, such as unfolding and dynamic anisotropy, try to give some improvement in the estimates, considering the variations of the distributions in the geological bodies, however, the definition of the search strategy in the other parameters is unique. This study presents an alternative to this, called Localized Kriging Parameters optimization (LKPO). LKPO considers the best local kriging parameters settings (block by block) through the local uncertainly (simulations). To illustrate this methodology, a synthetic dataset is presented, and the results are compared with the methodologies currently available in the geostatistical literature. Validation checks show a significant improvement in precision and accuracy on the estimates when using local kriging parameters.
分享
查看原文
基于局部不确定性的局部克里格参数优化
使用地质统计学技术(如克里格)估算具有空间相关性的自然现象,即平稳域,更加精确和准确。kriging估计需要定义空间连续性模型和搜索策略。许多技术,如展开和动态各向异性,都试图在估计中给出一些改进,考虑到地质体分布的变化,然而,其他参数的搜索策略的定义是独特的。本研究提出了一种替代方法,称为局部克里格参数优化(LKPO)。LKPO通过局部不确定性(模拟)考虑最佳的局部克里格参数设置(逐块)。为了说明这种方法,提出了一个合成数据集,并将结果与目前地统计学文献中可用的方法进行了比较。验证检查表明,当使用局部克里格参数时,估计的精度和准确性有了显着提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信