M. Marinova, C. Mckay, J. Heldmann, J. Goordial, D. Lacelle, W. Pollard, A. Davila
{"title":"Climate and energy balance of the ground in University Valley, Antarctica","authors":"M. Marinova, C. Mckay, J. Heldmann, J. Goordial, D. Lacelle, W. Pollard, A. Davila","doi":"10.1017/S0954102022000025","DOIUrl":null,"url":null,"abstract":"Abstract We report 3 years of data from one meteorological and three smaller stations in University Valley, a high-elevation (1677 m) site in the Dry Valleys of Antarctica with extensive dry permafrost. Mean air temperature was -23.4°C. Summer air temperatures were virtually always < 0°C and were consistent with the altitude lapse rate and empirical relationships between summer temperature, distance from the coast and elevation. The measured frost point (-22.5°C) at the 42 cm deep ice table is equal to the surface frost point and above the atmospheric frost point (-29.6°C), providing direct evidence that surface conditions control ground ice depth. Observed peak surface soil temperatures reach 6°C for ice-cemented ground > 15 cm deep but stay < 0°C when it is shallower. We develop an energy balance model tuned to this rocky and dry environment. We find that differences in peak soil surface temperatures are primarily due to the higher thermal diffusivity of ice-cemented ground compared to dry soil. Sensitivity studies show that expected natural variability is insufficient for melt to form and significant excursions from current conditions are required. The site's ice table meets the criteria for a Special Region on Mars, with 30% of the year > -18°C and water activity > 0.6.","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/S0954102022000025","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract We report 3 years of data from one meteorological and three smaller stations in University Valley, a high-elevation (1677 m) site in the Dry Valleys of Antarctica with extensive dry permafrost. Mean air temperature was -23.4°C. Summer air temperatures were virtually always < 0°C and were consistent with the altitude lapse rate and empirical relationships between summer temperature, distance from the coast and elevation. The measured frost point (-22.5°C) at the 42 cm deep ice table is equal to the surface frost point and above the atmospheric frost point (-29.6°C), providing direct evidence that surface conditions control ground ice depth. Observed peak surface soil temperatures reach 6°C for ice-cemented ground > 15 cm deep but stay < 0°C when it is shallower. We develop an energy balance model tuned to this rocky and dry environment. We find that differences in peak soil surface temperatures are primarily due to the higher thermal diffusivity of ice-cemented ground compared to dry soil. Sensitivity studies show that expected natural variability is insufficient for melt to form and significant excursions from current conditions are required. The site's ice table meets the criteria for a Special Region on Mars, with 30% of the year > -18°C and water activity > 0.6.
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.