When you can’t count, sample!

IF 1.2 Q3 PHYSICS, MULTIDISCIPLINARY
Stefano Martiniani, Mathias Casiulis
{"title":"When you can’t count, sample!","authors":"Stefano Martiniani, Mathias Casiulis","doi":"10.4279/pip.150001","DOIUrl":null,"url":null,"abstract":"\n\n\n\n\n\nIn statistical mechanics, measuring the number of available states and their probabilities, and thus the system’s entropy, enables the prediction of the macroscopic properties of a physical system at equilibrium. This predictive capacity hinges on the knowledge of the a priori probabilities of observing the states of the system, given by the Boltzmann distribution. Unfortunately, the successes of equilibrium statistical mechanics are hardto replicate out of equilibrium, where the a priori probabilities of observing states are, in general, not known, precluding the naı̈ve application of common tools. In the last decade, exciting developments have occurred that enable direct numerical estimation of the entropy and density of states of athermal and non-equilibrium systems, thanks to significant methodological advances in the computation of the volume of high-dimensional basins of attraction. Here, we provide a detailed account of these methods, underscoring the challenges present in such estimations, recent progress on the matter, and promising directions for future work.\n\n\n\n\n\n","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.150001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In statistical mechanics, measuring the number of available states and their probabilities, and thus the system’s entropy, enables the prediction of the macroscopic properties of a physical system at equilibrium. This predictive capacity hinges on the knowledge of the a priori probabilities of observing the states of the system, given by the Boltzmann distribution. Unfortunately, the successes of equilibrium statistical mechanics are hardto replicate out of equilibrium, where the a priori probabilities of observing states are, in general, not known, precluding the naı̈ve application of common tools. In the last decade, exciting developments have occurred that enable direct numerical estimation of the entropy and density of states of athermal and non-equilibrium systems, thanks to significant methodological advances in the computation of the volume of high-dimensional basins of attraction. Here, we provide a detailed account of these methods, underscoring the challenges present in such estimations, recent progress on the matter, and promising directions for future work.
当你不能数的时候,抽样!
在统计力学中,测量可用状态的数量及其概率,以及系统的熵,可以预测处于平衡状态的物理系统的宏观性质。这种预测能力取决于观察系统状态的先验概率的知识,由玻尔兹曼分布给出。不幸的是,平衡统计力学的成功很难在平衡之外复制,在平衡之外,观察状态的先验概率通常是未知的,这排除了常用工具的初步应用。在过去的十年里,由于在计算高维吸引盆地体积方面取得了重大的方法进步,出现了令人兴奋的发展,使得能够直接对无热和非平衡系统的状态熵和密度进行数值估计。在这里,我们详细介绍了这些方法,强调了这些估计中存在的挑战、这方面的最新进展以及未来工作的有希望的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Papers in Physics
Papers in Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
0.00%
发文量
13
期刊介绍: Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信