Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch
{"title":"Discharge coefficient, effective head and limit head in the Kindsvater-Shen formula for small discharges measured by thin-plate weirs with a triangular notch","authors":"Šimon Pošpíšilík, Z. Zachoval","doi":"10.2478/johh-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract The paper deals with the determination of the discharge coefficient, effective head and newly the limit head in the Kindsvater-Shen formula for the determination of a relatively small discharge of clear water using a thin-plate weir with a triangular notch. The determination of the discharge coefficient, effective head and limit head is based on extensive experimental research and is verified by previous measurements by other authors. The experimental research was characterised by a large range of notch angles (from 5.25° to 91.17°), weir heights (from 0.00 m to 0.20 m), and water temperatures (from 15 °C to 45 °C), as well as a focus on relatively small heads (from 0.02 m to 0.18 m), which is where the strengths of the Kindsvater-Shen formula stand out. The experimental research supplemented existing knowledge about the overflow occurring with small heads and small weir notch angles. The newly determined dependencies in the Kindsvater-Shen formula extended its applicability to weirs with small notch angles and newly enabled the determination of the limit head, which restricts its applicability in the determination of small discharges.","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"35 - 48"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2478/johh-2022-0040","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The paper deals with the determination of the discharge coefficient, effective head and newly the limit head in the Kindsvater-Shen formula for the determination of a relatively small discharge of clear water using a thin-plate weir with a triangular notch. The determination of the discharge coefficient, effective head and limit head is based on extensive experimental research and is verified by previous measurements by other authors. The experimental research was characterised by a large range of notch angles (from 5.25° to 91.17°), weir heights (from 0.00 m to 0.20 m), and water temperatures (from 15 °C to 45 °C), as well as a focus on relatively small heads (from 0.02 m to 0.18 m), which is where the strengths of the Kindsvater-Shen formula stand out. The experimental research supplemented existing knowledge about the overflow occurring with small heads and small weir notch angles. The newly determined dependencies in the Kindsvater-Shen formula extended its applicability to weirs with small notch angles and newly enabled the determination of the limit head, which restricts its applicability in the determination of small discharges.
期刊介绍:
JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.