Devansh Jalota, Kiril Solovey, Matthew Tsao, Stephen Zoepf, Marco Pavone
{"title":"Balancing fairness and efficiency in traffic routing via interpolated traffic assignment","authors":"Devansh Jalota, Kiril Solovey, Matthew Tsao, Stephen Zoepf, Marco Pavone","doi":"10.1007/s10458-023-09616-7","DOIUrl":null,"url":null,"abstract":"<div><p>System optimum (SO) routing, wherein the total travel time of all users is minimized, is a holy grail for transportation authorities. However, SO routing may discriminate against users who incur much larger travel times than others to achieve high system efficiency, i.e., low total travel times. To address the inherent unfairness of SO routing, we study the <span>\\({\\beta }\\)</span>-fair SO problem whose goal is to minimize the total travel time while guaranteeing a <span>\\({\\beta \\ge 1}\\)</span> level of unfairness, which specifies the maximum possible ratio between the travel times of different users with shared origins and destinations. To obtain feasible solutions to the <span>\\({\\beta }\\)</span>-fair SO problem while achieving high system efficiency, we develop a new convex program, the interpolated traffic assignment problem (I-TAP), which interpolates between a fairness-promoting and an efficiency-promoting traffic-assignment objective. We evaluate the efficacy of I-TAP through theoretical bounds on the total system travel time and level of unfairness in terms of its interpolation parameter, as well as present a numerical comparison between I-TAP and a state-of-the-art algorithm on a range of transportation networks. The numerical results indicate that our approach is faster by several orders of magnitude as compared to the benchmark algorithm, while achieving higher system efficiency for all desirable levels of unfairness. We further leverage the structure of I-TAP to develop two pricing mechanisms to collectively enforce the I-TAP solution in the presence of selfish homogeneous and heterogeneous users, respectively, that independently choose routes to minimize their own travel costs. We mention that this is the first study of pricing in the context of fair routing for general road networks (as opposed to, e.g., parallel road networks).</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"37 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-023-09616-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 11
Abstract
System optimum (SO) routing, wherein the total travel time of all users is minimized, is a holy grail for transportation authorities. However, SO routing may discriminate against users who incur much larger travel times than others to achieve high system efficiency, i.e., low total travel times. To address the inherent unfairness of SO routing, we study the \({\beta }\)-fair SO problem whose goal is to minimize the total travel time while guaranteeing a \({\beta \ge 1}\) level of unfairness, which specifies the maximum possible ratio between the travel times of different users with shared origins and destinations. To obtain feasible solutions to the \({\beta }\)-fair SO problem while achieving high system efficiency, we develop a new convex program, the interpolated traffic assignment problem (I-TAP), which interpolates between a fairness-promoting and an efficiency-promoting traffic-assignment objective. We evaluate the efficacy of I-TAP through theoretical bounds on the total system travel time and level of unfairness in terms of its interpolation parameter, as well as present a numerical comparison between I-TAP and a state-of-the-art algorithm on a range of transportation networks. The numerical results indicate that our approach is faster by several orders of magnitude as compared to the benchmark algorithm, while achieving higher system efficiency for all desirable levels of unfairness. We further leverage the structure of I-TAP to develop two pricing mechanisms to collectively enforce the I-TAP solution in the presence of selfish homogeneous and heterogeneous users, respectively, that independently choose routes to minimize their own travel costs. We mention that this is the first study of pricing in the context of fair routing for general road networks (as opposed to, e.g., parallel road networks).
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.