Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Zhomart Turarov, C. Totzeck
{"title":"Gradient-based parameter calibration of an anisotropic interaction model for pedestrian dynamics","authors":"Zhomart Turarov, C. Totzeck","doi":"10.1017/s0956792523000153","DOIUrl":null,"url":null,"abstract":"\n We propose an extension of the anisotropic interaction model which allows for collision avoidance in pairwise interactions by a rotation of forces (Totzeck (2020) Kinet. Relat. Models13(6), 1219–1242.) by including the agents’ body size. The influence of the body size on the self-organisation of the agents in channel and crossing scenarios as well as the fundamental diagram is studied. Since the model is stated as a coupled system of ordinary differential equations, we are able to give a rigorous well-posedness analysis. Then we state a parameter calibration problem that involves data from real experiments. We prove the existence of a minimiser and derive the corresponding first-order optimality conditions. With the help of these conditions, we propose a gradient descent algorithm based on mini-batches of the data set. We employ the proposed algorithm to fit the parameter of the collision avoidance and the strength parameters of the interaction forces to given real data from experiments. The results underpin the feasibility of the method.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an extension of the anisotropic interaction model which allows for collision avoidance in pairwise interactions by a rotation of forces (Totzeck (2020) Kinet. Relat. Models13(6), 1219–1242.) by including the agents’ body size. The influence of the body size on the self-organisation of the agents in channel and crossing scenarios as well as the fundamental diagram is studied. Since the model is stated as a coupled system of ordinary differential equations, we are able to give a rigorous well-posedness analysis. Then we state a parameter calibration problem that involves data from real experiments. We prove the existence of a minimiser and derive the corresponding first-order optimality conditions. With the help of these conditions, we propose a gradient descent algorithm based on mini-batches of the data set. We employ the proposed algorithm to fit the parameter of the collision avoidance and the strength parameters of the interaction forces to given real data from experiments. The results underpin the feasibility of the method.
基于梯度的各向异性行人动力学模型参数标定
我们提出了各向异性相互作用模型的扩展,该模型允许通过力的旋转在成对相互作用中避免碰撞(Totzeck (2020) Kinet)。遗传代数。模型(13(6),1219-1242 .),包括代理的身体尺寸。研究了通道和交叉情况下体大小对agent自组织的影响以及基本图。由于该模型被表述为常微分方程的耦合系统,我们能够给出严格的适定性分析。然后给出了一个涉及实际实验数据的参数标定问题。证明了最小值的存在性,并导出了相应的一阶最优性条件。在这些条件的帮助下,我们提出了一种基于小批量数据集的梯度下降算法。利用该算法将避碰参数和相互作用力强度参数拟合到给定的实验数据中。结果证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信